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Abstract—The paper presents an algorithm for reducing false alarms related to
changes in arterial blood pressure (ABP) in intensive care unit (ICU) monitoring.
The algorithm assesses the ABP signal quality, analyses the relationship between the
electrocardiogram and ABP using a fuzzy logic approach and post-processes (accepts
or rejects) ABP alarms produced by a commercial monitor. The algorithm was
developed and evaluated using unrelated sets of data from the MIMIC database.
By rejecting 98.2% (159 of 162) of the false ABP alarms produced by the monitor
using the test set of data, the algorithm was able to reduce the false ABP alarm rate
from 26.8% to 0.5% of ABP alarms, while accepting 99.8% (441 of 442) of true ABP
alarms. The results show that the algorithm is effective and practical, and its use in
future patient monitoring systems is feasible.
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1 Introduction

INTENSIVE CARE unit (ICU) monitors generate a high incidence
of false alarms, which becomes an annoying problem (WATT

et al., 1993; LAWLESS, 1994; TSIEN and FACKLER, 1997).
Clinicians sometimes solve this problem by simply disabling
the alarms altogether. A better solution, however, would be to
reduce the incidence of false alarms, without missing true alarm
events.

ICU monitors most often produce false alarms when a
physiological signal is corrupted by artifacts. Although most
such false alarms can be easily identified by looking at the signal
quality and by referencing other related signals, ICUmonitors do
not typically have sophisticated signal quality analysis, and they
generally do not take advantage of the known relationships
between signals of different modalities.

Fig. 1 shows examples of arterial blood pressure (ABP) artifacts
found in the MIMIC Database (MOODY and MARK, 1996). It
should be noted that some artifacts, such as those in Fig. 1d, can be
very similar in appearance to real physiological changes.

Previous efforts have been made to reduce ICU false alarms
based on analysis of single or multichannel measurements

available from commercial monitors (CREW et al., 1991;
MAKIVIRTA et al., 1991; FELDMAN et al., 1997; RHEINECK-
LEYSSIUS and KALKMAN, 1998; TSIEN and KOHANE, 1998; CAO

et al., 1999; TSIEN et al., 2000). Although these studies did not
directly address the quality of the signals from which the
measurements were derived, their results encourage further
research.

This study presents an algorithm for reducing false ABP
alarms by assessing the signal quality of the ABP waveform
and by fusing information from simultaneous electrocardiogram
(ECG) and ABP signals (ZONG et al., 1999). The process
employed a fuzzy logic analysis approach. We used separate
subsets of records from the MIMIC database for development
and for evaluation. Our results suggest that this algorithm is
effective and practical and shows promise for use in future
patient monitoring systems.

2 Materials and methods

2.1 Database

We used 25 multi-parameter records of ICU patients from the
MIMIC database, which is freely available from PhysioNet
(http:==www.physionet.org) (GOLDBERGER et al., 2000), for
the algorithm development set, and 28 different records from
the same database for the algorithm evaluation test set. The
development set consisted of a total of 825 h of data taken from
20 patients (ten male, ten female, age 52–92 years). The record
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duration averaged 33 h (ranging from 8.7 to 62.7 h in length).
The test set records were from 26 patients (16 male, ten female,
age 21–92 years) and totalled 1065 h in duration. The record
duration averaged 38 h (ranging from 10.6 to 58.5 h).

Patients involved in this study had a wide range of clinical
problems, including sepsis, respiratory failure, congestive
heart failure=pulmonary oedema, haemorrhage, brain injury,
myocardial infarction, cardiogenic shock and post-operative
care for cardiac surgery. All patient records contained at least
multi-lead ECGs and radial ABP, which were used in this
study. Most records contained additional physiological
signals, such as pulmonary arterial pressure, pulse oximetry
(plethysmograph), impedance-based respiration etc. The ECG
signals were digitised at 500Hz, and other signals were
digitised at 125Hz, with 12-bit resolution. The records also
contained extensive clinical data, including patient history,
laboratory results, medication, fluid balance and clinical
observations.

In addition to the physiological signals and the clinical data,
theMIMIC database includes alarm annotations produced by the
bedside monitors. When an alarm condition (a measurement
crossing a threshold) is first detected, alarm annotations are
generated at intervals of 1.024 s, and they continue until either
the measurement returns to an acceptable range or the ICU staff
intervenes to silence the alarm. In this study, alarm annotations
referring to the same alarm condition were treated as a single
alarm event. A new alarm condition would be defined only after
an interval of 15 s without an alarm. A few alarm annotations that
were associated with saturated digital signals were removed,
because correct ABPmeasurements were not available (from the
saturated signal). Each machine-annotated alarm condition was
carefully examined by the authors, without reference to our

algorithm’s classification of the event, and judged to be either
true or false.

The criteria for manually annotating ABP alarms were as
follows: For each monitor-generated ABP alarm, at least 30 s (up
to 5min) of ABP and ECG waveforms prior to the alarm were
scrutinised. The ABP measurements from the ABP waveform in
this region were also manually checked by means of a graphic
signal viewing=measuring tool called WAVE (MOODY and
MARK, 1991), which is freely available from PhysioNet. If the
ABP signal was corrupted by artifacts (as identified by human
experts) resulting from events such as catheter flush, patient
movement or a clot-blocked transducer, the alarm was annotated
as a false alarm. If the ABP signal was clean, and there was no
sign of a transducer-caused problem, the manually checked
measurements from the waveform matched the values obtained
from the monitor for the alarm, and the changes in the ABP
signal could be understood by reference to the ECG, the alarm
was considered a true alarm. When the ABP signal had changes
that could be either physiological or artifact-related, the ECG
reference was very important in verifying the cause of the ABP
changes; see Fig. 1d and Fig. 9f.

The development set contained a total of 445 ABP alarm
events, of which 319 were true positives and 126 were false
positives (28.3%). The test set contained 604 ABP alarm events,
of which 442 were true positives and 162 were false (26.8%)
positives.

2.2 Methodology overview

Our approach was based on beat-by-beat ABP signal quality
analysis with incorporation of ECG–ABP relationships. The
structure of the algorithm is shown in Fig. 2.

First, ABP signal quality was assessed on a beat-by-beat basis,
yielding a signal quality index SQIi, that had a value between
0 and 1. SQIi was derived from and was associated with each
beat. Secondly, if QRS information from ECG data was avail-
able, SQIi could be modified, based on analysis of the ECG
rhythm and ECG–ABP delay time (the time delay between the
QRS and the followingABP pulse). Thirdly, only ABPmeasure-
ments (systolic, diastolic andmean blood pressure) derived from

Fig. 1 Examples of artifacts in ABP signals: (a) transducer flushing,
(b) motion, (c) probably movement induced, (d) proximal BP
cuff inflation. 30 per trace

Fig. 2 Overview of algorithm
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high-quality signals (those signals with high SQIi value) were
used for updating the short-term averaged blood pressure (BP)
values. Finally, acceptance or rejection of each alarm was based
on the short-term averaged BP values and recent SQIi values
preceding each alarm.

2.3 Signal quality assessment of the ABP

Signal quality assessment of the ABP was performed through
beat-by-beat fuzzy testing of ABP waveform features. This
process consisted of ABP pulse detection, waveform feature
extraction, waveform feature fuzzy representation and fuzzy
reasoning to produce the signal quality index.

2.3.1 ABP pulse detection algorithm: An effective ABP pulse
onset detection algorithm was developed based on the regional
slope feature of the low-pass filtered ABP signal (ZONG et al.,
2003). The main ascending portion (from the onset to the peak)
of the ABP pulse possesses the maximum average positive
slope. A slope sum function (SSF) was defined as shown in
(1) to enhance the ascending portion of the ABP pulse and to
suppress the remainder of theABP signal, to simplify the process
of ABP pulse detection.

SSF(k) ¼
Xk
i¼k�w

Dyi Dyi ¼
Dxi if D xi40

0 if D xi � 0

�
(1)

In (1), k is the current sample number, w is a window that is
approximately equal to the duration of the ascending portion of a
typical ABP pulse (we chose w¼ 16, or 128ms at the 125Hz
sampling rate), D xi¼ xi� xi� 1, and xi is the ith ABP sample.

The relationship between the original ABP and the trans-
formed signal SSF is shown in Fig. 3. The onset of the SSF pulse
corresponds with the onset of the ABP pulse, as the SSF signal
rises only when the ABP signal rises or when noise in the signal
is not suppressed by the low-pass filter. The ABP pulse can be
detected through observation of the SSF pulse.

The decision rule for detecting the SSF pulse onset consisted
of two procedures: adaptive thresholding of the SSF signal to
detect SSF pulses of appropriate amplitude, and local searching
around the detection point to confirm the detection and to
identify the onset of the pulse. During the thresholding step, a
threshold base value was established and was initialised at three
times the mean SSF signal (averaged over the first 1000 samples
of recording). The threshold base value was adaptively updated
by the maximum SSF value for each SSF pulse detected. The
actual threshold was taken to be 60% of the threshold base value.
When the SSF signal crossed this threshold, the algorithm
searched for the minimum and the maximum values in a
150ms window preceding and succeeding the threshold-
crossing point, respectively. The pulse detection was accepted
only if the difference between the maximum and minimum
exceeded a predefined, empirical value. When the pulse was
accepted, the algorithm searched backward in time from the

threshold-crossing point for the onset of the SSF pulse. The
onset point was determined when the SSF signal dropped to the
minimum þ1.0% of the maximum SSF value. The calculated
ABP pulse onset was adjusted by 16ms, or two samples, to
compensate for the low-pass filter’s phase shift. Finally, to avoid
double detection of the same pulse, a 250ms eye-closing
(refractory) period was applied, during which no new pulse
detection was initiated.

2.3.2 ABP waveform feature extraction: ABP waveform
feature extraction was performed on a beat-by-beat basis. The
waveform features used in this studywere systolic blood pressure
(SBP), diastolic blood pressure (DBP), mean blood pressure
(MBP), maximum positive pressure slope (MPPS), maximum
negative pressure slope (MNPS), maximum up-slope duration
(MUSD) (which was the maximum duration that the ABP signal
continued rising), maximum duration above threshold (MDAT)
(which was the maximum duration that the ABP signal stayed
above a threshold), pulse-to-pulse interval (PP), pulse blood
pressure (PBP) (which was the difference between SBP andDBP
in a beat) and ECG-ABP delay time (DT) (whichwas the interval
between theQRS onset in the ECG and the onset of the following
ABP pulse; this feature could be obtained only when ECG was
available).

At the beginning of the record there was a 20 s learning period.
During this learning period, each ABP pulse was detected and, in
each beat cycle (from the previous pulse onset to the current
one), the waveform features listed above were extracted and
averaged. The averaged features established in the learning
period were the initial base feature set.

After the learning period, the algorithm worked as shown in
Fig. 4. For beat cycle i, a 2 s detection time window was defined
from the previous window endpoint. If the previous window
ended at a detected pulse (i.e. if the flag was set to 1), the
detection window started at t0 plus an eye-closing period (Dt,
250ms) to jump over the previous detected pulse. Otherwise,
the window began at t0, as there was no pulse detected in
the previous window. If an ABP pulse was detected within the
window (between t0 and t1), the end of the window t1 was reset
to the time of the onset of the detected pulse. Otherwise, the
window ended as previously set (i.e. 2 s from t0). The flagwas set
to 1 or 0, according to whether a pulse was detected or not. The

Fig. 3 Typical ABP waveform from MIMIC database and corre-
sponding slope sum function (SSF) Fig. 4 Assessment of ABP signal quality using ABP itself
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features of the waveform within the window, from t0 to t1, were
extracted and kept for later analysis.

2.3.3 Fuzzy representation and reasoning: Based on fuzzy set
theory and applications (ZADEH, 1965, 1983; PEDRYCZ and
GOMIDE, 1998; ZONG and JIANG, 1998) and knowledge of the
ABP waveform morphology (O’ROURKE et al., 1992; BERNE

and LEVY, 1997), a group of linguistic variables was defined to
describe the local waveform characteristics: ‘ABP_amplitude_
too_high’, ‘ABP_slope_normal’, ‘ABP_keeps_rising_too_long’
etc. Two standard fuzzy set membership functions, the S
function (PEDRYCZ and GOMIDE, 1998) and the Z function,
defined in (2) and (3) and shown in Fig. 5, were used to define
these linguistic variables (see Table 1).

During the processing cycle, all the linguistic variables were
calculated based on the extracted waveform features and
the reference values in the base feature set, which evolved as
the signal changed (see Section 2.5 for details).

S(x; a, b) ¼

0 x4 a

2
x� a

b� a

� �2
a5x4

aþ b

2

1� 2
x� b

b� a

� �2
aþ b

2
5x4 b

1 b5x

8>>>>>>>><
>>>>>>>>:

(2)

Z(x; a, b) ¼ 1� S(x; a, b) (3)

From these linguistic variables, three composite variables
were defined using fuzzy conditional statements (FCSs):
ABP_amplitude_normal (AN), ABP_slope_normal (SN), and
ABP_with_blocked_transducer (WBT). These statements are
as follows:

IF [not ‘ABP amplitude too large’ (ATL)] and

[not ‘ABP amplitude too small’ (ATS)]

THEN ‘ABP amplitude normal’ (AN )

mAN ¼ (1� mATL) ^ (1� mATS) (4)

where operator ^ is the standard fuzzy intersection (ZADEH,
1965); and mA(x)^ mB(x)¼min[mA(x), mB(x)], for all x in the
appropriate domain.

IF [not ‘ABP slope too large’ (STL)] and

[not ‘ABP slope too small’ (STS)]

THEN ‘ABP slope normal’ (SN )

mSN ¼ (1� mSTL) ^ (1� mSTS) (5)

IF [‘ABP pulse pressure decrease’ (PPD)] and

[‘ABP diastolic pressure increase’ (DBPI )] and

[not ‘premature ABP pulse’ (PrP)]

THEN ‘ABP with blocked transducer’ (WBT )

mWBT ¼ mPPD ^ mDBPI ^ (1� mPrP) (6)

Finally, a conclusive linguistic variable signal_quality_good
(SQG) was defined to describe the signal quality in the localised
period. The signal quality index, SQIi, was assigned as the
certainty degree of SQG, as seen in (7).

IF [‘ABP amplitude normal’ (AN )] and

[‘ABP slope normal’ (SN )] and

[not ‘ABP keeps rising too long’ (KRTL)] and

[not ‘ABP stays high too long’ (SHTL)] and

[not ‘ABP with blocked transducer’ (WBT )]

THEN ‘signal quality good’ (SQG)

SQIi ¼ mSQG ¼ mAN ^ mSN ^ (1� mKRTL) ^

(1� mSHTL) ^ (1� mWBT ) (7)

The base feature set, established during the initial learning period,
evolved using weighted averaging as the ABP waveforms
changed. Only those ABP episodes with good signal quality
(SQIi4 0.5) were counted into the weighted averaging process.

2.4 Use of ECG–ABP relationships

The ECG and ABP signals are closely related in terms of
rhythm and timing.When an ECG signal was available, the SQIi,
as described above, could be modified, based on analysis of the
ECG–ABP relationships. Fig. 6 summarises this procedure.

The analysis of the ECG–ABP relationship began after the
SQIi was derived from the current ABP episode. If the current
ABP episode contained a detected ABP pulse (flag¼ 1), then the
preceding QRS complex was checked. If the preceding QRSwas
not premature, and the ECG–ABP delay time fell within the
expected range, indicating that the ABP pulse was associated
with a real beat, or if the beat was premature (in which case the
algorithm did not attempt to predict the timing of the ABP pulse),
then SQIi was not modified. Otherwise, the pulse could be an
artifact, and SQIiwas set to zero. If no ABP pulse was detected in

Fig. 5 Shapes of S-function and Z-function

Table 1 Linguistic variables and their definitions

Variable
name Description and definition Parameter explanation

ATL ABP_amplitude_too_large: mATL¼ S (SBP� SBPa; 20, 60) SBP: systolic BP, mmHg; SBPa: systolic BP base
ATS ABP_amplitude_too_small: mATS¼ Z (DBP; 0, 20) DBP: diastolic BP, mmHg
STL ABP_slope_too_large: mSTL¼ S (MPPS=MPPSa; 1, 3) MPPS: maximum positive BP Slope; MPPSa: MPPS base
STS ABP_slope_too_small: mSTS¼ S (MNPS=MNPSa; 1, 3) MNPS: maximum negative PB slope; MNPSa: MNPS base
KRTL ABP_keeps_rising_too_long: mKRTL¼ S (MUSD; 200, 500) MUSD: maximum up-slope duration, ms
SHTL ABP_stays_high_too_long: mSHTL¼ S (MDAT; 400, 800); MDAT: maximum duration up threshold, ms
PPD ABP_pulse_pressure_decrease: mPPD¼ Z (PBP=PBPa, 0.5, 0.9); PBP: pulse blood pressure; PBPa: PBP base
DBPI ABP_diastolic_pressure_increase: mDBPI¼ S (DBP=DBPa; 0.8, 1.1); DBP: diastolic blood pressure: DBPa: DBP base
PrP Premature_ABP_pulse: mPrP¼ Z (PP=PPa; 0.75, 0.95) PP: pulse-pulse interval; PPa: PP base value
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the current ABP episode, but the ECG rhythm was regular, this
suggested the ABP non-pulse episode was due to artifact, and the
SQIi was set to zero. If the ECG rhythm was irregular, the SQIi
was accepted without modification, as such rhythms can be
accompanied by the loss of ABP pulses.

In this study, a previously developed ECG beat detection and
classification algorithm, Aristotle (MOODY and MARK, 1982),
was employed to obtain QRS times of occurrence and types of
QRS complex. According to the QRS occurrence time and QRS
type obtained from Aristotle, the prematurity of the current QRS
and the regularity of the current ECG rhythm can be determined.

To identify premature QRS complexes, a fuzzy variable
‘premature_QRS (PrQ)’ was defined as

mPrQ ¼ Z(RR=RRa; 0:75, 0:95) (8)

where RR was the current RR interval, and RRa was the recent
short-term averaged RR interval. If mPrQ4 0.5, the current beat
was considered as a premature QRS.

The variable ‘delay_time_match (DTM)’ was used to deter-
mine whether the QRS and the detected ABP pulse were a
match. DTM was defined as follows:

mDTM ¼ S(DT=DTa; 0:4, 0:9) ^ Z(DT=DTa; 1:1, 1:6)

(9)

where DT was the current QRS-ABP delay time, and DTa was
the averaged QRS-ABP delay time established during the
learning period.

The linguistic variable ‘QRS_on_time (QOT)’ was defined as

mQOT ¼ S(RR=RRa; 0:75, 0:95) ^ Z(RR=RRa; 1:05, 1:25)

(10)

If mQOT4 0.5, the QRS was considered as on time. Aristotle
provides QRS labels including normal (N), ventricular prema-
ture contraction (VPC), supra-ventricular premature contraction
(SVPC) etc.

To determine if the ECG rhythm was regular, the 15 s period
ending at the current time was considered. If, in this range, more
than half of the QRS complexes were either on time or labelled
as normal, the ECG rhythm was considered regular.

After the ECG–ABP relationship analysis procedure, the final
SQIi was acquired to determine the effective short-term ABP
measurements and to update the base feature set, as discussed in
the following Section.

Fig. 7 shows an example of the ABP signal quality index
(SQI) derived from the ECG and ABP data from record 254 in

the MIMIC database. Low values of SQI correspond to poor
ABP signal quality (note that there is a one-beat delay from the
ECG and ABP signals to the SQI signal).

2.5 Measurements from good-quality signals

After the final SQIi was determined, the base features were
updated with the current waveform feature values if the corre-
sponding SQIi was high enough (>0.5). Not all base features
were updated. The features that needed updating were SBPa,
DBPa, MBPa, MPPSa, MNPSa and PPa. The updating
mechanism is shown in (11).

NNa ¼ 0:875�Naþ 0:125�N (11)

where Na was the previous value in the base feature set, N was
the feature value from the current waveform, and NNa was the
updated base feature value.

The algorithm obtained the instantaneous ABPmeasurements
(systolic, diastolic and mean blood pressures) for each beat or
episode when it completed the SQI analysis. The algorithm also
produced the short-term averaged ABP measurements derived
from instantaneous measurements, with SQIi4 0.5. Values
associated with poor signal quality were not counted in the
averaged measurements (see Fig. 8). The short-term averaging
method is given by (11). For each beat, if SQIi4 0.5, the current
average value NNa was primarily based on the previous aver-
aged value Na, with a small adjustment based on the current
value N. If SQIi� 0.5, the average value was not modified. The
output of the algorithm included the instantaneous beat-by-beat
measurements, SQIi, and the short-term averaged ABPmeasure-
ments. The SQI and the short-term averaged ABPmeasurements
were used as a basis for the algorithm’s decisions regarding the
alarms.

When we compared the ABP measurements produced by the
monitor and those derived from our algorithm (see the example
in Fig. 8, with data from MIMIC record 212), we could see that
most unexpected spikes in the monitor’s measurements had been
removed.

2.6 Criteria for reducing false ABP alarms

The patient monitor used for collecting MIMIC records
producedABP alarms based on some sort of short-term averaged
systolic ABP measurements. There was a delay, of about 10 s,
before the monitor issued an alarm annotation.

Our algorithm judged the ABP alarms produced by the
monitor based on the SQIi and the averaged ABP measure-
ments. This judgment was based on the 15 s prior to the onset
of the alarm condition annotated by the monitor. If all the SQIi
in this 15 s interval were good (5 0.5), suggesting that the
signal quality in this region was not a problem, the alarm was
judged as true. If there were four or more bad SQIi (<0.5) in
this interval, indicating that the signal quality was bad, the
alarm was judged as false. If there were up to three bad SQIi,
then the systolic ABP measurement from the monitor and the
averaged systolic ABP measurements from the algorithm were
compared. If at least three of our algorithm’s measurements

Fig. 6 Procedure for ABP SQIi modification by use of ECG–ABP
relationship

Fig. 7 Example of ABP signal quality index (SQI) (30 s). SQI signal
lags ABP signal by one beat interval
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were within 10mmHg of the monitor’s measurement, then the
alarm was judged as true. This situation means that the signal
quality in this episode was balanced between good and bad.
The monitor that produced the alarm, based its measurements
on the recent ABP signal. If the monitor’s measurement was
close enough to the averaged measurements derived from our
algorithm, then the monitor’s measurement was confirmed, and
the alarm was accepted.

3 Results

As detailed in Table 4 in the Appendix, the development data
set contained 25 records averaging 33 h in length. These ranged
between 8.7 and 62.7 h (a total of 825 h). The monitors produced
445 ABP alarms, of which 126 (28.3%) were false based on our
visual review. It was found that the algorithm rejected 117 of
these 126 false alarms (92.9%) and only two true alarms (as
summarised in Table 2). Thus the algorithm reduced the false
alarm rate in the development data set from 28.3% to 2.8%, at a
cost of rejecting 0.4% of 319 true alarms.

We repeated this experiment using the test data set, 28 records
averaging 38 h in length, with a range of 10.6–58.5 h (1065 h in
all). Table 5 in the Appendix shows the detailed evaluation
results for the test data. The monitors produced 604 ABP alarms,
of which 162 (26.8%) were false based on our visual review. The
algorithm rejected 159 (98.2%) of these false alarms, reducing
the false alarm rate from 28.6% to 0.4%, while rejecting only one
(0.2%) of the 442 true alarms. Table 3 has a summary of the
algorithm’s performance.

Fig. 9 includes examples of false alarms rejected (Figs 9a–c),
false alarm accepted (Fig. 9d), true alarms accepted (Figs 9e and
f ) and true alarms rejected (Figs 9g–i ) from both the develop-
ment and test data sets.

4 Discussion

The algorithm performed very well on the development set,
rejecting almost all of the false positive alarms. Significantly, its
performance on the test set was even better, supporting the
hypothesis that the algorithm can be applied usefully to real-
world data that have not been used for development. Any
algorithm designed to reject false positives, however, can be
expected to reject some true positives as well. Of particular
concern in this study was the possibility that a clinically
significant true alarm could be erroneously rejected. For this
reason, we carefully examined the three cases in which true
alarms were rejected by our algorithm (Figs 9g–i).

The two true alarms rejected by the algorithm in the
development data set were distorted signal waveforms with
real ABP changes; one was with hypertension, as shown in
Fig. 9g, and the other was with hypotension, Fig. 9h. In Fig.
9g, there is transient hypertension accompanying patient
movement. The alarm limit was 220mmHg (for systolic
ABP), and this alarm was annotated as a true alarm. The
algorithm judged the ABP signal quality as not perfect (two
beats with low SQI value), and the ABP measurements
obtained by the algorithm did not meet the alarm limit at the
time of the monitor’s alarm; thus the algorithm marked the
alarm as a false alarm. In the case of Fig. 9h, a hypotension
alarm was present with the alarm limit at 85mmHg (for
systolic ABP). A catheter flush just prior to the alarm event
caused the algorithm to deem the ABP signal quality low
enough (four or more beats with low SQI value) to reject the
alarm. Arguably, neither of these two cases was clearly a true
alarm.

The single rejected true alarm in the test data set occurred
when the systolic ABP suddenly increased following a long,
slow attenuation of the ABP signal (see Fig. 9i). In this case,
the algorithm adapted to the attenuated ABP signal and
determined its signal quality to be good; when the signal
suddenly increased to normal scale, the algorithm was not
able to recognise the cause; it calculated a low SQI and thus
rejected the alarm. This situation might be avoided by introdu-
cing an extra waveform base feature set and additional rules
into the algorithm. The second feature set would keep the
waveform features that are from the patient’s most normal
state. When the SQI derived from the first base feature set
became low for a certain time, the second feature set would be

Table 2 Algorithm performance on the development data

Algorithm true false total

Truth true 317 2 319
false 9 117 126

Sensitivity: 99.4%
Positive predictive accuracy: 97.2%

Table 3 Algorithm performance on the test data

Algorithm true false total

Truth true 441 1 442
false 3 159 162

Sensitivity: 99.8%
Positive predictive accuracy: 99.3%

Fig. 8 Systolic blood pressure against time: (a) SBP measurements
producedbymonitor; (b) SBPmeasurements fromouralgorithm
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used to verify the low calculated SQI of the current ABP
signal. If the SQI from the second feature were good (i.e.
>0.5), then the first obtained SQI would be modified, and the
existing feature set would be updated from the current wave-
form features. In this way, the algorithm could avoid misbe-
having when the ABP signal returns to a normal clean state
from a damped situation, as in Fig. 9i.

The nine false alarms that the algorithm did not reject in the
development set were due to ABP signals obtained while
the transducer was blocked by blood clots. Such signals
show the systolic ABP gradually dropping and the mean and
diastolic ABP staying almost the same. The algorithm includes
special fuzzy conditional statements, see (6) and (7), for such
situations. As a result, many of these false alarms were rejected
if the signal features changed in a short time (see Fig. 9b).
When the signal features changed gradually (see Fig. 9d ), then

the algorithm could misinterpret this as a real ABP change.
Most false alarms (eight out of nine) were contained in two
records (453, 454) relating to one patient. The three false
alarms not rejected in the test set contained artifacts that the
algorithm could not identify.

The additional ECG–ABP relationship was particularly useful
whenever artifacts appeared similar to real physiological
changes. Figs 1d and 9c show episodes of ABP with artifacts
similar to the real change in ABP associated with VT=VF, as
seen in Fig. 9f. Without checking the ECG–ABP relationship,
the algorithm would produce an SQI signal that continued to be
good in the artifact region, because the algorithm considers this
kind of ABP change to be real by looking at the ABP signal
alone. Using the ECG–ABP relationship, the algorithmmodified
the SQI, as shown in Fig. 9c, and was able to reject this kind of
false alarm without rejecting true alarms, as in Fig. 9f. In most

Fig. 9 Examples of algorithm’s judgment on ABPalarms: (a) false alarm caused by artifact (probably movement induced), rejected (four or more
bad SQIi ), 1min trace; (b) false alarm caused by obstructed catheter, rejected (fourormore bad SQIi ), 1min trace; (c) false alarm caused by
cuff inflation, rejected (fouror more bad SQIi ), 1 min trace; (d) false alarm due to clot-blocked transducer, accepted (SQIi are all good within
15 s), 2min trace; (e) true alarm related to ABP increase, accepted (SQIi are all good ), 1 min trace; ( f ) true alarm related to ventricular
fibrillation, accepted (one bad SQIi, BP measurements meet alarm limit), 30 s trace; (g) true alarm related to ABP increase and patient
movement, rejected (two bad SQIi, BP measurements do not meet alarm limit), 1min trace; (h) true alarm right after catheter flush, rejected
(four or more bad SQIi), 1min trace; (i) true alarm related to sudden increase in ABP signal, rejected ( four or more bad SQIi), 2 min trace
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other situations, as in Fig. 7 and the rest of Fig. 9, the ECG–ABP
relationship did not significantly affect the SQI.

5 Conclusions

Artifact is a major factor responsible for false alarms. It is
useful to derive a signal quality control index to reduce these
false alarms. Sometimes, artifacts appear similar to real physio-
logical changes; thus additional information from other related
signals is crucial.

This paper presents an approach to reducing false ABP alarms
based on both the analysis of ABP signal quality and the use of
ECG–ABP relationships. Fuzzy feature representation and
reasoning provide a comprehensive and effective way to
assess signal quality for each ABP episode. Data suspected of
being artifact-corrupted are marked but not discarded. ABP
measurements from the data with good SQI appear more reliable

than those without adequate signal quality control. By using this
approach, false ABP alarms are significantly reduced, with only
a small number of rejected true alarms. Note that the number of
alarm events missed by the monitors themselves was not
determined in this study.

Our results indicate that this approach appears to be effective
and practical and should be considered for use in future
monitoring systems.
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Appendix

Table 4 Results of ABP false alarms on development data set

Record
number

Length of
record, h Total TP TPk TPr FP FPr FPk

211 21.5 27 27 26 1 0 0 0
212 41.3 29 25 25 0 4 4 0
222 22.4 25 21 21 0 4 4 0
226 31.8 15 5 5 0 10 10 0
230 19.0 19 18 18 0 1 1 0
231 42.0 4 2 2 0 2 2 0
237 42.7 6 0 0 0 6 6 0
252 28.2 6 2 2 0 4 4 0
253 42.5 22 17 17 0 5 5 0
254 42.5 23 11 11 0 12 11 1
262 42.7 3 3 3 0 0 0 0
404 22.3 6 0 0 0 6 6 0
405 22.9 6 0 0 0 6 6 0
410 23.5 18 6 6 0 12 12 0
413 21.4 18 15 15 0 3 3 0
415 42.0 10 10 10 0 0 0 0
451 31.2 26 18 18 0 8 8 0
452 33.7 15 13 13 0 2 2 0
453 46.7 26 17 17 0 9 6 3
454 42.6 42 27 26 1 15 10 5
456 47.2 50 31 31 0 4 4 0
471 62.7 15 8 8 0 7 7 0
472 8.7 7 7 7 0 0 0 0
477 30.0 26 25 25 0 1 1 0
480 19.5 16 11 11 0 5 5 0

Sum 825 445 319 317 2 126 117 9
Average 33 18.4 12.8 12.7 0.1 5.0 4.7 0.4

Total¼ total alarm annotations from beside monitors; TP¼ total true positive alarms; TPk¼ true positives accepted by
algorithm; TPr¼ true positives incorrectly removed by algorithm; FP¼ total false positive alarms; FPr¼ false positives
removed by algorithm; FPk¼ false positives remaining after processing of algorithm. PPA gross¼ 71.69%! 97.24%;
PPA average¼ 64.63%! 98.42%

Table 5 Results of ABP false alarms on test data set

Record
number

Length of
record, h Total TP TPk TPr FP FPr FPk

213 49 49 46 46 0 2 2 0
221 24 17 17 17 0 0 0 0
224 47 8 0 0 0 8 8 0
225 46 7 2 2 0 5 5 0
240 30 31 31 31 0 0 0 0
248 34 4 3 3 0 1 1 0
276 58 9 6 6 0 3 2 1

(continued)
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Table 5 Continued

Record
number

Length of
record, h Total TP TPk TPr FP FPr FPk

281 11 4 3 3 0 1 1 0
291 22 4 0 0 0 4 4 0
401 25 8 2 2 0 4 4 0
408 48 21 2 2 0 19 19 0
409 43 40 28 28 0 12 12 0
411 46 16 5 5 0 11 11 0
414 25 45 41 41 0 4 4 0
417 12 9 3 3 0 6 6 0
418 27 3 0 0 0 2 2 0
427 58 53 33 33 0 16 16 0
430 52 1 0 0 0 1 1 0
438 52 12 9 9 0 3 3 0
439 46 27 17 17 0 10 10 0
442 35 5 0 0 0 5 5 0
443 51 20 6 5 1 8 8 0
444 54 38 38 38 0 0 0 0
446 27 48 31 31 0 12 12 0
449 42 37 21 21 0 16 15 1
474 38 10 5 5 0 4 4 0
476 18 33 31 31 0 2 2 0
484 43 66 62 62 0 3 2 1

Sum 1065 604 442 441 1 162 159 3
Average 38 23.0 16.4 16.3 0.0 5.8 5.7 0.1

Total¼ total alarm annotations from bedside monitors; TP¼ total true positive alarms; TPk¼ true positives accepted
by algorithm; TPr¼ true positives incorrectly removed by algorithm; FP¼ total false positive alarms; FPr¼ false
positives removed by algorithm; FPk¼ false positives remaining after processing of algorithm. PPA
gross¼ 73.79%! 99.32%; PPA average¼ 56.72%! 99.24%
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