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Abstract

Heart rate variability (HRV), the beat-to-beat fluctuation of the heart rate, is a non-
invasive test that measures the autonomic regulation of the heart. Assessment of HRV
has been shown to predict the risk of mortality in patients after an acute myocardial
infarction. Recently, the Krieger lab at MIT developed genetically engineered double
knockout (dKO) mice that develop coronary artery disease accompanied by sponta-
neous myocardial infarctions and die at a very young age. This thesis investigated
whether HRV could function as a prognostic indicator in the dKO mouse.

A novel method for estimating physiological state of the mouse from the elec-
trocardiogram using an innovative activity index was developed in order to compare
HRV variables at different times while controlling for physiologic state. Traditional
time and frequency domain variables were used to assess the prognostic power of
HRV.

Results have shown that none of the HRV variables were helpful in predicting
mortality in the dKO mice. Mean heart rate showed some prognostic power, but it
was not consistent in all the dKO mice. Finally, the activity index developed in this
thesis provided a reliable metric for activity in mice as validated by a camera with
motion detection.

Thesis Supervisor: Roger G. Mark
Title: Distinguished Professor of Health Science and Technology
Professor of Electrical Engineering
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Chapter 1

Introduction

Coronary heart disease (CHD) is a narrowing of the coronary arteries that supply

blood and oxygen to the heart. CHD usually results from a build up of fatty material

and plaque on the inner lining of the wall of the coronary arteries known as atheroscle-

rosis. There are two kinds of plaques, fibrous and vulnerable. Fibrous plaques have

thick walls and small lipid cores which are more stable and cause narrowing, flow

limitation and chronic angina. In contrast, vulnerable plaques have thinner walls

and large lipid cores. Vulnerable plaques may become unstable and have a tendency

to rupture which can partially or completely occlude coronary arteries and lead to

ischemia or myocardial infarction (MI), a leading cause of death in the United States.

Recently, the Krieger Lab at MIT developed a genetically engineered mouse that

models human CHD [3, 6]. These mice die within 8 weeks of age due to severe

complications of CHD with extensive MI’s. Over the past few decades, heart rate

variability (HRV) in humans has emerged as a promising marker of cardiac auto-

nomic tone in varying physiological and pathological states. Researchers have found

that depressed HRV after an acute myocardial infarction (AMI) is associated with

poor long-term prognosis in humans [2, 7]. This thesis investigates if this relationship

is also present in the mouse model.
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1.1 Background and Previous Work

1.1.1 The Heart

The heart is in the center of the thoracic cavity suspended by its attachments to the

superior and inferior venae cavae and aorta (see Fig.1-1). The heart pumps blood

through two separate circulatory systems, one to the lungs and one to the rest of the

body. The right side of the heart pump provides the energy necessary to move the

blood to the lungs while the left heart provides energy that moves blood through the

systemic organs. The following summary of the anatomy and physiology of the heart

is taken from Guyton et al. [8].

The pathway of blood flow through the chambers of the heart begins with venous

blood returning from the systemic organs to the right atrium via the superior and

inferior venae cavae. It passes through the tricuspid valve into the right ventricle

and is pumped through the pulmonic valve into the pulmonary circulation via the

pulmonary arteries. Oxygenated blood from the lungs flows through pulmonary veins

to the left atrium and passes through the mitral valve into the left ventricle. From

there it is pumped through the aortic valve into the aorta to the systemic organs.

The phase of the cardiac cycle in which the ventricular muscle cells contract is called

systole. Diastole is the relaxation portion of the cardiac cycle during which the

ventricles refill with blood.

Figure 1-1: Chambers and valves of the heart
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The heart is a muscle, which has its own oxygenated blood supply. The coronary

arteries supply the heart with blood primarily during the diastolic phase of the car-

diac cycle. There are two main coronary arteries, the right and left coronary artery,

each with several branches (see Fig.1-2). The left main coronary artery has two major

branches: the circumflex branch and the anterior descending branch. These branches

feed the lateral and anterior portions of the left ventricle respectively. The right

coronary artery and its branches supply blood to the right ventricle, right atrium,

the interventricular septum, and inferior wall of the left ventricle. The right coronary

artery usually provides the local blood supply to the sinoatrial (SA) node, the atri-

oventricular (AV) node, and the Bundle of His, which are part of the heart’s electrical

conduction system.

Figure 1-2: Coronary arteries of the heart

The primary function of the heart’s electrical conduction system is to coordinate

the sequence of atrial and ventricular contraction. It accomplishes this by the con-

duction of action potentials, which are electrical excitatory impulses, from one cell

to the next via gap junctions that link all cells of the heart into a synchronous unit.

The components of the electrical conduction system include the SA node, the AV

node, the bundle of His, and the right and left bundle branches, which are made up

of specialized muscle cells called Purkinje fibers(see Fig.1-3). These muscle cells have
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fewer contractile elements and are wider in diameter than other cardiac muscle cells

(myocytes) such that they propagate action potentials up to 5 times faster than other

myocytes. The SA node functions as the heart’s primary pacemaker and initiates the

action potentials that are conducted through the heart. The AV node acts to create

a slight delay between atrial and ventricular contraction. The Purkinje fibers assure

that all ventricular cells contract at nearly the same time.

Figure 1-3: Conduction system of the heart showing the sinoatrial (SA) node, atri-
oventricular (AV) node and the ventricular bundle branches

The intrinsic rate of the SA node is influenced by a balance of inputs from the

sympathetic and parasympathetic divisions of the autonomic nervous system. The

heart is innervated by sympathetic and parasympathetic (vagus) nerve fibers. The

sympathetic nerve distribution is to all parts of the heart including the ventricles.

This is in contrast to the vagus nerves which control the parasympathetic stimulation

of the heart. The vagus nerves are found mainly in the SA and AV nodes, with a

small portion innervating the atria and very little to the ventricles. This anatomic

distribution of the sympathetic and parasympathetic nerves to the heart is impor-

tant to myocardial contractility because the ventricles are responsible for generating

most of the force of contraction. When the sympathetic nerves are stimulated, they

13



release the hormone norepinephrine at the sympathetic nerve endings. This results in

an increase in heart rate via the SA node and increased action potential conduction

velocity. Because of the presence of sympathetic nerve fibers in the ventricles, an

increase in contractility also occurs. Parasympathetic stimulation causes essentially

the opposite effects on the heart to those caused by the sympathetic stimulation.

Parasympathetic stimulation releases acetylcholine at the vagal endings, which inter-

acts with the cardiac muscle cells. Because the SA and AV nodes have vagus nerve

innervation and the ventricles are mostly lacking, the effect of vagal stimulation re-

sults primarily in a decrease in heart rate rather than a decrease in contractility of

the heart.

Some important measures of cardiac function include cardiac output, stroke vol-

ume and ejection fraction. Cardiac output is the amount of blood pumped from each

ventricle per minute. It is the product of the stroke volume (the amount of blood

ejected per beat) and the number of heart beats per minute. Ejection fraction can

indicate the efficiency of myocardial contractility. It is the ratio of the stroke volume

to the amount of blood in the left ventricle at the end of relaxation, or left ventricular

end-diastolic volume.

1.1.2 The Electrocardiogram

The electrocardiogram (ECG) records the electrical activity of the heart and provides

a valuable tool in understanding cardiac activity. The major features of the ECG are

the P wave, QRS complex and T wave that are caused by atrial depolarization,

ventricular depolarization and ventricular repolarization respectively (see Fig.1-4).

The following description of the ECG was adapted from Dubin’s textbook [9].

The SA node, the heart’s pacemaker, initiates the electrical impulse which spreads

outward stimulating both atria. The electrical impulse spreads through the atria

yielding a P wave on the ECG. The impulse then reaches the AV node where the

velocity of the impulse slows down before it can completely penetrate through the

AV node. After penetrating the AV node, the electrical impulse proceeds rapidly

down the bundle of His to the left and right bundle branches, and into the Purkinje
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fibers which terminate in the myocardial cells of the ventricles. Depolarization of

the ventricular muscles causes the QRS complex. The Q wave is the first downward

stroke of the QRS complex followed by the upward R wave and ending by a downward

S wave. The Q wave is often not present in the QRS complex.

The QRS complex is followed by the ST segment. Normally, no electrical poten-

tials are measured on the body surface during the ST segment. However, myocardial

injury or ischemia can produce elevations or depressions of the ST segment. When

ventricular cells begin to repolarize, an electrical signal will again appear on the body

surface and is measured as the T wave of the ECG.

Figure 1-4: Normal electrocardiogram

Automaticity is the property to spontaneously generate an electrical impulse.

Cells that have this property can stimulate the heart to beat and are located in

the SA node, parts of the atria, AV node and ventricles. The heart is usually paced

by the fastest available pacemaker, the SA node that paces about 60 to 100 beats per

minute (sinus rhythm). The AV node and the ventricles can pace the heart at a rate

of 40 to 60 and 20 to 40 beats per minute respectively.

“If for some reason, a higher pacemaker center fails to generate an impulse, or if

the impulse is not properly conducted, a pacemaker lower in the cardiac conduction

system will have time to depolarize to its threshold potential and generate an impulse.

Such a beat is called an escape beat. A sustained sequence of such beats is called an

escape rhythm. On the other hand, if a lower pacemaker site prematurely discharges
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because of local increased automaticity, the resultant beat is called an ectopic beat. A

series of such beats would thus be an ectopic rhythm [10]”.

In a diseased heart, sometimes the electrical signal from the heart’s upper to lower

chambers is blocked which prevents the passage of electrical stimuli, known as heart

block. Heart blocks can occur in the SA node (sinus exit block), AV node or in the

larger sections of the ventricular conduction system.

1.1.3 Coronary Heart Disease

The heart provides the force needed to circulate blood to the systemic organs by

the coordinated pumping action of its chambers. The orderly sequence of atrial and

ventricular contraction is possible only when a healthy electrical conduction system

is present. Heart disease such as CHD that disturbs this electrical conduction system

can lead to any one of several potentially life threatening dysrhythmias, such as heart

blocks. A common cause of heart block is coronary heart disease (CHD) resulting

from coronary atherosclerosis.

Atherosclerosis is a disease characterized by a narrowing of the arteries or steno-

sis caused by a buildup of fatty deposits on the inside wall of the artery. Typi-

cally, atherosclerosis consists of lesions confined to the large and middle-sized ar-

teries. Atherosclerosis is heavily linked to hypercholesterolemia with high levels of

low-density lipoprotein (LDL) cholesterol as well as low levels of high-density lipopro-

tein (HDL) cholesterol [3]. When this process occurs in the coronary arteries, CHD

develops. The greatest problem with CHD is an imbalance between oxygen supply

and demand. When myocardial oxygen demand increases, coronary arteries that are

stenosed with lesions are unable to increase blood supply to the heart muscles [11].

This leads to ischemia, a reversible state of inadequate blood flow, which can result in

insufficient oxygen delivery to the tissues. Prolonged ischemia leads to tissue death,

or necrosis. The ischemic death of the heart muscle or myocardium is known as

myocardial infarction (MI) [11].

MI can occur in various regions of the heart wall and may be described as anterior,

inferior, posterior or lateral depending on the anatomic location. Twelve lead ECG’s

16



help to localize the affected area through identification of Q waves and changes in

ST segments and T waves [9]. The severity of functional impairment after an MI

depends on the size of the injury to the heart muscle and the site of the infarction.

Acute myocardial infarction (AMI) is usually accompanied by some degree of left

ventricular dysfunction, which results in a decreased cardiac output, stroke volume,

or ejection fraction [11]. When the left heart is not pumping blood forward, it leads

to congestive heart failure and the development of pulmonary edema, which can lead

to death.

Figure 1-5: Occlusion of the coronary artery

The goal of treatment for myocardial ischemia is to reduce myocardial oxygen

consumption or to increase blood supply to the heart muscles. Pharmacologic agents

are often employed to manipulate the various determinants of myocardial oxygen

consumption, which include blood pressure, heart rate, contractility, and left ventric-

ular volume [11]. The most commonly used classes of drugs are the nitrates, beta-

adrenergic blockers, and calcium-channel blockers. For AMI, thrombolytic therapy

may be administered. The function of thrombolytic therapy is to activate plasmin,

a naturally occurring agent that breaks down the components of blood clots, which
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may be obstructing a coronary artery [11]. Other methods of treatment for CHD

include mechanical manipulation of stenosed vessels. These include stent placement

for dilation of a narrowed coronary artery and bypass grafting where a vein or artery

is harvested and used to bypass the existing coronary obstruction [11].

Although CHD is a preventable disease, more than half a million people in the

United States die each year from it making it the leading cause of death today. Two

Americans suffer a heart attack every minute from CHD, and one of these will die.

Lifetime risk of death from CHD after age 40 is 49% for men and 32% for women

[11].

1.1.4 Heart Rate Variability

Heart Rate Variability (HRV) is a physiological phenomenon defined as variation in

RR intervals (RRI) during normal sinus rhythm. The RRI is defined as the time

interval between adjacent QRS complexes resulting from sinus node depolarization

(see Fig.1-6). Since the sinus node is subject to both sympathetic and parasympa-

thetic efferent effects, the fluctuations of the RRI have been well accepted to reflect

the effects of the autonomic nervous system [12]. The measurement of HRV is non-

invasive, often reproducible and rather easy to perform and has led to its popularity

as a method for the measurement of autonomic tone in varying physiological and

pathological states.

Figure 1-6: Example of the RR interval (RRI). Also shown are P-R and Q-T intervals
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Traditional methods of HRV analysis, often referred to as linear methods, include

time and frequency domain analysis. Time domain analyses of HRV are usually

obtained using simple statistical methods. The simplest time domain parameter is

the mean of the RRI (RRmean), which is the average RRI over a given time window.

Another parameter commonly used is the standard deviation of the RRI (SDNN)

which is sometimes regarded as an estimate of overall HRV.

Other measures include RMSSD, the square root of the mean squared differences

of successive NN intervals, NN50, the number of interval differences of successive NN

intervals greater than 50 ms, and pNN50, the proportion derived by dividing NN50

by the total number of NN intervals. All these are based on differences between

RR intervals and thus are highly correlated, and they all estimate the short-term

components of HRV [1].

In 1981, Akselrod et al. introduced power spectral analysis of heart rate fluctu-

ations to quantitatively evaluate beat-to-beat cardiovascular control [12]. Standard

methods used for spectral analysis include Fourier transformation (FT) and autore-

gressive modeling (AR). Investigators usually divide the power spectrum into different

spectral bands and calculate the powers in these bands. The spectrum is divided into

three or four different bands. The boundaries of the most commonly used frequency

bands in humans are as follows:

• ULF - ultra low frequency — < 0.0033 Hz.

• VLF - verylow frequency — 0.0033 Hz - 0.04 Hz.

• LF - low frequency — 0.04 Hz - 0.15 Hz.

• HF - high frequency — 0.15 Hz - 0.4 Hz.

The boundaries have been recommended by Task Force of the European Society

of Cardiology and the North American Society of Pacing and Electrophysiology [1].

Understanding of the modulatory effects of neural mechanisms on the sinus node

has been enhanced by power spectral analysis of HRV. The motivation for splitting
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Figure 1-7: Example of an estimate of power spectral density obtained using Fourier
Transform. Also shown are the boundaries of the four different bands (Taken from
[1]).

the spectrum into different frequency bands lies in the belief that the distinct bi-

ological regulatory mechanisms that contribute to HRV act at frequencies that are

approximately confined within these bands [13]. The physiological explanation for

ULF and VLF bands is not well defined and the existence, if any, of a specific phys-

iological process is still in question. However, it has been well accepted that vagal

(parasympathetic) activity is a major contributor to the HF band, as seen in clinical

and experimental observations [12]. More controversial is the LF band: although

it reflects sympathetic and parasympathetic activity, some consider it as a marker

of sympathetic activity only [14]. Since both the sympathetic and parasympathetic

nervous system contribute to the modulation of the heart rate, the ratio of power

in the LF band to the HF band, known as the LF
HF

ratio, is taken as a measure of

autonomic balance (also known as sympathovagal balance). Although this measure

is widely accepted by investigators, it still remains a topic of much debate [1]. The

measurement of the LF and HF power is usually done in absolute power or in normal-

ized units, which represents the relative value of each power component in proportion

to the power of the LF and HF components combined.
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1.1.5 Heart Rate Variability and Coronary Heart Disease

Coronary heart disease often leads to MI, which can lead to sudden death. Powerful

sympathetic reflexes often develop after a massive myocardial infarction primarily

due to the inadequate blood flow into the coronary arterial tree [8]. Investigators

have been studying changes in HRV indices to assess autonomic activity in patients

after MI.

In 1976, using facial immersion, Ryan et al. observed impaired parasympathetic

response in patients 3 months after MI. Facial immersion in water 25 degrees C and

0 degrees C provoked less slowing of the heart rate in patients than in age matched

controls suggestive of a decreased parasympathetic response in AMI patients [15].

Several years later, reports showed a strong link between depressed HRV and poor

long-term prognosis in patients after AMI [16, 2]. In 1983, Wolf et al. found that

HRV measured on admission to the coronary care unit in 176 patients with AMI was

a predictor of mortality [16]. They found that patients with reduced RRI variability

(RRI variance less than 32 ms) in a 60 second ECG recording had a significantly

higher mortality rate than patients with a higher RRI variability. In a separate study

of 808 patients who survived AMI, mortality was 5.3 times more likely in the group

with SDNN less than 50 ms than the group with SDNN greater than 100 ms in a 24

hour recording taken approximately 11 days after AMI [2]. Moreover, in this study,

SDNN was also found to be closely correlated to ejection fraction, a measure of the

function of the left ventricle which is related to long term prognosis(see Fig.1-8 and

1-9).

Using frequency domain analysis, ULF and VLF power were strongly associated

with mortality whereas the LF and HF power were only moderately associated with

mortality [17]. The study was done on 715 patients 2 weeks after MI and patients were

followed for up to four years. Most studies have focused on HRV between 1 to 2 weeks

after MI; however, recent studies have shown that HRV taken earlier is also associated

with mortality [7, 18]. Carpeggianni et al. studied 413 patients with new onset of

AMI and found that the LF component is an independent prognostic indicator of
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Figure 1-8: Survival vs time after myocardial infarction (MI) in patients with SDNN
below 50 ms, 50 -100 ms and above 100 ms (Taken from [2].)

Figure 1-9: SDNN and ejection fraction versus mortality. The number of patients in
each group is given in the upper right hand corner. The proportion dying is shown
by the height of the bar and the number below each bar(Taken from [2].)
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major complications after AMI. The risk of complications increases over 2 fold when

the absolute LF power of the RRI series is below 148 ms2 [7]. Frequency domain

measures were obtained from 256 consecutive RRI series and averaged over a 24-hour

period to obtain the respective power bands. In another study, using a substudy

of the GUSTO (Global Utilization of Streptokinase and TPA for Occluded Arteries)

trial, Singh et al., found reduced low frequency to high frequency ratio (LF/HF ratio)

was strongly associated with mortality [18]. In this study, HRV measurements were

also taken in relation to left ventricular function and patency of the infarcted artery.

HRV measures were increased in patients with better ejection fraction (correlated

with increased pnn50 and LF component) and angiographic patency (correlated with

increased pnn50, LF and HF component).

All of these findings suggest that HRV can potentially be used as a prognostic

indicator in CHD. In the last decade, modifications of mouse genome to model human

diseases have been rapidly increasing. Recently, a mouse model for human CHD has

been developed [3] and will be discussed in the next section.

1.1.6 Mouse Model

Researchers have attempted to create murine models of CHD through genetic ma-

nipulation that have the same important features of human disease including hyper-

cholesterolemia, atherosclerosis, lipid-rich coronary lesions, ischemia, MI and cardiac

dysfunction. Rodent models that are genetically engineered to have apolipoprotein

E (apoE) deficiency, a critical enzyme in the metabolism of LDL, develop severely

elevated levels of LDL. Unfortunately, these mice do not usually exhibit the same

critical features of human CHD [3].

Recently, the Krieger lab at MIT developed a ”double knockout” (dKO) mouse.

This mouse has homozygous null mutations in apoE and SR-BI, a scavenger receptor

that plays an important role in HDL metabolism [3, 6]. The dKO mice exhibit

hypercholesterolemia and dramatically develop atherosclerosis, fibrin-rich coronary

artery occlusions, multiple MI’s, cardiac dysfunction and most die within 6 weeks of

age (see Fig.1-10).
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Figure 1-10: Survival percentage of dKO mice as a function of time (solid line). Wild
type mouse usually survive about 2 years (Taken from [3]).

The dKO murine model represents human CHD more closely than its predecessor

with only the apoE deficiency [3]. Specifically, the dKO mice have enlarged hearts,

and extensive MI and scarring. They also demonstrate left ventricular systolic dys-

function, which is indicative of impaired contractility; lower ejection fractions, which

measure heart function; and, ECG disturbances such as severe ST depression and

dysrhythmias [3]. Angiograms show stenoses and occlusions of the left coronary

artery and its branches (see Fig.1-11). Currently, mouse electrocardiograms (ECG)

are continuously being monitored and recorded for the purpose of providing a tool to

understand and investigate changes in cardiac electrical activity during progression

of the coronary artery disease process [5].
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Figure 1-11: Angiograms and MRI based ejection fraction. A) Angiograms of wild
type (left) and dKO (right) hearts. The dKO demonstrates multiple stenoses in
the left anterior descending artery and its branches. B) MRI based average ejection
fractions from apoE KO and dKO mice (Taken from [3]).
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1.1.7 Heart Rate Variability in Mice

Lately, there has been an increase in the development of genetically modified mice

to model human cardiovascular diseases. Conversely, studies involving HRV to assess

autonomic cardiovascular control in wild type and genetically altered mice have been

very limited, especially in young mice. Nevertheless, HRV studies have been done in

mice using similar human HRV parameters scaled approximately by a factor of 10 to

adjust for heart and respiratory rate differences between the two species [4, 19]. In

the frequency domain, the regions used for the LF and HF components vary but are

concentrated around 0.4 Hz to 1.5 Hz for LF and 1.5 Hz to 4.0 Hz for HF.

Figure 1-12: Effects of autonomic blockade in frequency domain measures of HRV.
Figure taken from [4]

In a study by Gerhmann et al., using these frequency bands, LF and HF power

decreased significantly after parasympathetic blockade by atropine [4]. Conversely,

sympathetic blockade by propanolol increased both LF and HF components. The

study suggested that the HF components were generally modulated by the parasym-

pathetic nervous system, whereas the LF components were influenced by both the

sympathetic and parasympathetic system, which implied that LF is not a reliable

measure for sympathetic activity (see Fig.1-12). However, scaling of the frequency

bands by the approximate ratio of mouse-to-human heart rate was not fully justified.
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The effect of the autonomic blockade on the time domain parameters of HRV indi-

cated that sympathetic tone dominates in baseline resting state (baseline heart rate)

since atropine had no substantial effect on the RR interval (see Fig.1-13). In addition,

the increase in SDNN or overall HRV after sympathetic blockade is possibly due to

a saturating effect of the sympathetic nervous system on parasympathetic activity

during baseline resting state, which is alleviated after administration of propanolol

(i.e. HRV is driven to a more dynamic range) [20].

Figure 1-13: Effects of autonomic blockade in time domain measures of HRV. Shown
are mean RRI (left) and SDNN (right). Figure taken from [4]

1.2 Goals and Outline

This thesis will analyze HRV in the mouse model of CHD. Specifically, it will in-

vestigate if HRV indices in mice have some prognostic value similar to humans with

CHD. Mouse ECG is currently being recorded by the Hermes Server (see Fig.1-14)[5].

Preprocessing, extracting RRI as well as HRV analysis will be done using Matlab

software. The motivation behind HRV analysis is that it may help biologists track

the progression of the disease including monitoring the effects of pharmaceutical in-

terventions.

Before measuring HRV indices, a customized version of the Pan and Tompkins

QRS detector will be used and developed in Matlab to extract the RR intervals [21].

It is only useful to compare HRV indices in distinct segments when they are taken

during a similar or the same physiological state. In humans, physiological states
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such as sleep and wake states are commonly recorded and correlated with ECG data.

Unfortunately, in the mouse ECG data, physiological state is unknown, therefore, the

next step will be to estimate physiological state from the ECG. The most obvious

determinants for physiological state from the ECG in mice are heart rate, time of day

and physical activity.

An activity index for physical activity is measured in two ways; by measuring

the noise content of the ECG and by using the cross-spectral density between the

respiratory sinus arrhythmia (RSA) and the ECG derived respiration (EDR) [22, 23].

In addition, it is necessary to make a video monitoring system with motion detection

algorithm to confirm the ECG derived activity index. In chapter 2, details of the

steps above will be discussed including parameters used for HRV indices. Results

of the algorithm and HRV analysis will be presented in chapter 3, conclusion and

suggestions for further work in chapter 4.
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Figure 1-14: Hermes Server (Rotated figure). Figure shows mean heart rate in 10
minute segments (top), instantaneous heart rate in a 10 minute window (middle) and
the electrocardiogram (bottom) of a dKO mouse.
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Chapter 2

Methods

2.1 Overview

Chapter 1 provided the background and usefulness of HRV indices in humans with

CHD. The same standard measures of HRV are applied to the mouse model using

mean, standard deviation and power spectral analysis of the RR intervals. This chap-

ter provides a detailed description on how HRV indices are calculated including the

extraction of the RR intervals from the ECG. In addition, the method for estimating

physiological state using an activity index derived from the ECG is discussed.

2.2 Mouse Electrocardiogram

The mouse ECG is obtained from surgically attached electrodes. Two recording wires

are implanted subcutaneously on both sides of the thorax and one is attached on the

back as a ground wire. The signal from the electrodes is processed and recorded by

the Hermes Server data acquisition system [5]. A simple block diagram below shows

the hardware for the data acquisition system (see Fig. 2-1). The system consist of

an amplifier, bandpass filter (passband approx. 0.1 - 1000 hz) and an A/D converter.

The output of the bandpass filter is sampled at 2 kHz, digitized with 16-bit precision

and stored in 10 minute segments [5]. A one second duration of mouse ECG is shown

in figure 2-2.
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Figure 2-1: Hermes block diagram. Mouse ECG is amplified followed by bandpass
filtering and A/D conversion Taken from [5].

Figure 2-2: Mouse Electrocardiogram.

2.3 QRS Detector

HRV is a measure of the fluctuations in beat-to-beat timing of the heart during

normal sinus rhythm. This measure reflects the variation of autonomic inputs into

the SA node. Ideally, HRV should be measured using PP intervals which are the

time intervals between adjacent P waves. Unfortunately, P waves on the ECG have

low signal-to-noise ratios and are very difficult to detect. Most commonly, HRV is

measured using RR intervals. The primary reason for this is that the R-peak (QRS

complex) is the most prominent feature on the ECG and is easier to detect.

2.3.1 Pan and Tompkins Algorithm

The Pan and Tompkins algorithm is used to detect QRS complexes in the mouse

ECG [21]. The algorithm consists of two main processes:

1. Pre-processing of ECG signal — this involves both linear and non-linear filter-

ing. The primary function of this process is to filter out ECG noise and help

identify regions in which to look for QRS complexes. The filtering processes are
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outlined below.

(a) Band-pass filtering (5 - 200 Hz) — a cascade of low pass filter and high

pass filter with cutoff frequency 200 Hz and 5 Hz respectively to remove

high frequency noise and baseline wander.

(b) Differentiation — differentiation will emphasize the positive and negative

slope of the QRS complex.

(c) Squaring — this makes all points positive and does a non-linear amplifi-

cation of the differentiation output emphasizing the higher frequencies.

(d) Moving-Window Integration — the main purpose of the moving-window

integration is to aid in fiducial point localization. In the mouse ECG, this

window is about 10 ms wide.

2. Post-processing — this stage decides in which regions of the ECG to look for

QRS complexes and extract the RR interval and amplitude of the QRS peak.

(a) The regions where the fiducial point of the QRS complexes is located when

the output of the moving-window integration exceeds a certain threshold.

In mice, the threshold is set to 15 % of the maximum moving-window

integration output in a one second wide time frame. This threshold is

adaptive and changes every one second.

(b) The fiducial point is then found looking back at the peak of the band-pass

filtered ECG within the regions found in the previous step.

The Pan and Tompkins algorithm performs very efficiently and correctly detected

99.3 % of the QRS complexes in the MIT-BIH arrhythmia database [21]. The QRS

detector seems to work well in mouse ECG. Figure 2-3 illustrates the pre-processing

stages of the algorithm and figure 2-4 shows the output (heart rate) of the Pan and

Tompkins QRS detector compared to the wqrs algorithm [24] on a very noisy segment

of the mouse ECG. Observe that the beat-to-beat heart rate using wqrs algorithm

shows more noise artifacts compared to the Pan and Tompkins algortihm.

31



Figure 2-3: Pan and Tompkins algorithm pre-processing. Clean (left figure) and noisy
ECG (right figure). From top to bottom on each figure: original mouse electrocardio-
gram (ECG), band-pass filtered ECG, differentiation, squaring and moving-window
integration.

Figure 2-4: Beat-to-beat heart rate detected by wqrs (upper) and Pan and Tompkins
(lower) algorithm on a noisy mouse ECG.
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2.3.2 Ectopic Rejection

Since HRV analysis examines the beat-to-beat timing variations during normal sinus

rhythm, ectopic beats can affect HRV by introducing artifacts into the computation

of the time and frequency domain measures. In humans as well as mice, it is ideal

that clinicians classify each beat. However, classifying each beat in long term ECG

recording is very time consuming and impractical. Therefore, an ectopic or artifact

rejection algorithm is needed to exclude these beats from the analysis.

One of the most common algorithms used in humans in identifying ectopic beats is

adapted for the mouse. Beats assumed to be ectopic are determined by the fractional

change of the (n+ i)th RR interval (RRn+i) from the most recent normal RR interval

(RRn). ∆RRn+i is calculated as

∆RRn+i =
|RRn+i −RRn|

RRn

, (2.1)

where n and i are integers.

If ∆RRn+i > (i ∗ 0.15), the (n + i)th beat is assumed ectopic resulting in the

deletion of the (n + i)th and (n + i + 1) RR intervals. As an example, given that the

nth beat is normal, if ∆RRn+1 is greater than 0.15, RRn+1 and RRn+2 intervals are

deleted. The next RR interval RRn+3 is then compared to RRn. If ∆RRn+3 is greater

than 3 ∗ 0.15, RRn+3 and RRn+4 intervals are deleted. The algorithm is assumed to

remove some sinus beats as well as retain a few ectopic beats. The threshold of 0.15

is arbitrary and is similar to the threshold used in humans [25, 26]. Furthermore, 30

second segments with fewer than 50 beats after ectopic deletion are discarded from

the analysis.

2.4 HRV Parameters

HRV is evaluated using time and frequency domain analysis. To perform the analysis,

an RR tachogram is obtained using the output of the Pan and Tompkins algorithm

discussed above. Additionally, since only normal-to-normal beats are considered for
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the analysis, the RR tachogram is filtered by the ectopic beat detection algorithm.

It should be noted that the RR tachogram is an unevenly sampled time series. Since

mouse heart rate and respiratory rate is approximately 10 times faster than humans,

some of the HRV metrics used in humans will be scaled by a factor of 10 to be

applicable to mice [4].

2.4.1 Time Domain

In the time domain, standard HRV indices mean (RRmean) and standard deviation

(SDNN) of the RR intervals are computed. The time domain indices will be calcu-

lated as follows:

Given there are N RR intervals in a segment,

1. Mean

RRmean =
1

N

N∑

n=1

RRn (2.2)

2. Standard Deviation

SDNN =

√√√√ 1

N − 1

N∑

n=1

(RRn −RRmean)2 (2.3)

2.4.2 Frequency Domain

Power spectral analysis is a widely used technique to assess activity of the autonomic

nervous system [12]. As mentioned before, considering the differences in heart rate

and respiratory rate between mice and humans, the frequency spectrum of the RR

tachogram is split in three frequency bands:

• VLF - very low frequency — < 0.4 Hz.

• LF - low frequency — 0.4 Hz - 1.5 Hz.

• HF - high frequency — 1.5 Hz - 5 Hz.
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Figure 2-5: Welch’s averaged periodogram. A 30 second RR tachogram (upper) and
the power spectrum (lower).

Normalized power within the low (LF) and high (HF) frequency bands as well as

the LF
HF

ratio are computed. Normalization of these parameters is as follows:

LFnorm =
LF

LF + HF
(2.4)

HFnorm =
HF

LF + HF
(2.5)

Power spectrum is estimated using Welch’s average periodogram [27]. However,

due to the uneven sampling nature of the RR tachogram, it needs to be interpolated

and resampled. The RR intervals are interpolated using cubic spline interpolation and

resampled at a sampling frequency of 30 Hz. Therefore, in a 30 second window, there

are 900 sample points. These points are divided into 8 overlapping segments of 200

points each. Each segment will be zero padded to 256 points and eight periodograms

are computed and averaged to estimate the power spectrum.
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2.5 Activity Index

Physiological state is needed to compare HRV indices in different segments. In this

thesis, an ECG derived activity index is used to estimate physiological state of the

mouse. The components of the activity index involve heart rate, ECG noise and

the cross-spectral density between the respiratory sinus arrythmia (RSA) and ECG

derived respiration (EDR).

2.5.1 Noise Content in ECG

Increase in noise in the ECG signal is a strong indication of an increase in level of

physical activity. ECG noise is estimated by power spectral analysis using the fast

fourier transform (FFT). Specifically, Welch’s averaged periodogram method is used .

In particular, on a given discrete time ECG signal, the mean is removed and linearly

detrended. The signal is then divided into eight sections with 50% overlap. Each

section is windowed with a Hamming window, zero padded to the next power of two

and eight periodograms are computed and averaged.

The energy in the clean mouse ECG signal is mostly contained between 1 Hz to

200 Hz (see Fig. 2-6). In Figure 2-6, it should be noted that the first peak in the

power spectrum corresponds to the mouse heart rate. A noisy mouse ECG signal

usually results in an increase in energy in the low (< 3 Hz) frequency range which

corresponds to baseline wander of the ECG (see Fig. 2-7). Surprisingly, noise in the

ECG signal, which includes movement and muscle artifacts, does not seem to manifest

itself as a significant increase in energy above 200 Hz. For this reason and due to

the fact that mouse (dKO) heart rate can drop below 120 (below 2 Hz), ECG noise

will be measured primarily by baseline wander (energy below 1 Hz). Specifically, the

ECG index is measured as

ECGindex =
Power > 1 Hz

Total Power (0− 250 Hz)
(2.6)

Therefore, equation 2.6 will have a value between 0 and 1, where a value of 1

indicates noise free (no baseline wander) ECG signal and a value closer to 0 for very
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noisy ECG.

Figure 2-6: A 30 second segment of a clean mouse ECG (top). Power spectrum of
the clean ECG signal (bottom). Note that peak in the power spectrum around 7 Hz
corresponds to the mouse heart rate (420 bpm).

2.5.2 RSA and EDR

Heart rate increases with inspiration and decreases with expiration. This phenomenon

is known as respiratory sinus arrhythmia (RSA). RSA is partly due to the expansion

and contraction of the lungs and the cardiac filling volume from variations of intra-

thoracic pressure [8]. During inspiration, the pressure within the thorax decreases and

venous return increases which stretches the right atrium resulting to a reflex increase

in heart rate. The opposite happens during expiration. This is called the Bainbridge

reflex [8].

Respiratory rate may be derived from the body surface ECG (EDR) by measuring

the fluctuation of the mean cardiac electrical axis [22] or peak QRS amplitudes which

accompany respiration. This fluctuation is due to changes in thoracic impedance

caused by the expansion and contraction of the chest during respiration. Figure 2-8
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Figure 2-7: A 30 second segment of a noisy mouse ECG (top). Power spectrum of
the noisy ECG signal (bottom). Note the increase in energy in the low frequencies.

shows RSA (RR interval oscillations) and EDR obtained from peak QRS amplitude

in mice.

The frequency coupling of the two signals (RSA and EDR) is of great interest since

it has been shown to be correlated to sleep stability in humans [23]. In this thesis,

the frequency coupling of RSA and EDR is used as one of the major components

in estimating mouse activity. Coupling between these two signals is more evident or

easily obtainable when the mouse is at rest (or in deep sleep) where there are fewer

factors that may significantly influence the heart rate or the ECG signal. Furthermore,

the strongest coupling frequency will be directly correlated with respiration, which is

a very good index of activity. Normal young adult mice have respiratory rate around

3 Hz.

Frequency coupling is measured using the cross-spectral density between RSA

and EDR. Two slightly different measures of cross-spectral density are obtained:

coupling frequency with respect to magnitude of the sinusoidal oscillations A(f) and

the consistency phase of the oscillations Θ(f) are separately calculated (details in

appendix). Additionally, A(f) and Θ(f) are normalized and multiplied together
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Figure 2-8: Respiratory Sinus Arrhythmia (RSA) and ECG derived respiration
(EDR). EDR obtained from peak QRS amplitude (top) and RSA (bottom). Si-
nusoidal frequency of both plot are approximately 3 Hz.

to obtain cardiorespiratory coupling (CRC), a measure of RSA and EDR coupling.

Mathematically,

CRC(f) =
A(f)

max[A(f)]
∗ Θ(f)

max[Θ(f)]
= Anorm(f) ∗Θnorm(f) (2.7)

CRC values range between 0 and 1, where the value closer to 1 means strong

coupling of RSA and EDR at a given frequency. In Figure 2-9, CRC in a normal

mouse, is plotted as a function of time. Notice that CRC sometimes peaks around

the 3 Hz breathing frequency. Figure 2-10 shows the mean heart rate, ECG noise,

maximum CRC in frequencies between 1.5 Hz to 5 Hz (CRCindex) greater than 0.4 and

the corresponding frequencies. Observe that the regions where CRCindex is greater

than 0.4 correlates with low mean heart rates and low ECG noise. Moreover, the

corresponding frequencies are around 3 Hz, which is the normal breathing frequency.

This observation indicates that CRC may be used as a good index of mouse activity.

It is important to note that frequency components of RSA and EDR signal can
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Figure 2-9: Cardiorespiratory Coupling (CRC). 3-D plot of CRC of a normal mouse.
CRC is computed on a 30 second window and sliding the window by 45 seconds.

Figure 2-10: From top to bottom: mean heart rate HRmean (bpm), ECG noise,
CRCindex greater than 0.4 and frequency. Notice the correlation between high
CRCindex with low heart rate and low ECG noise. CRC is computed on a 30 second
window and sliding the window by 15 seconds.
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only be obtained if heart rate is high enough (i.e. sampling effect of heart rate with

respect to RSA and EDR). In the dKO mouse, extreme drop in heart rate can result in

frequency aliasing. In figure 2-11, as HRmean decreases the corresponding frequency of

CRCindex > 0.4 also decreases until CRCindex eventually disappears (close to zero). It

is unclear if the decrease in frequency is due to a decrease in heart rate (low sampling

frequency) or the actual respiratory rate.

Figure 2-11: Mean heart rate HRmean (bpm) (top), CRCindex > 0.4 (middle) and the
corresponding frequency of the CRCindex > 0.4 of a dKO mouse.

2.5.3 Video Monitoring and Motion Detection

A video monitoring system with motion detection is necessary to track mouse activity

and confirm the ECG derived activity index discussed in previous sections. Commer-

cially available webcams, made by D-Link, are used for image acquisition. These

webcams have a built in motion detector; however, the motion detection output can-

not be easily extracted and correlated to the ECG signal. More importantly, the

motion detection is set at a fixed sensitivity and outputs only binary decisions (i.e.
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Figure 2-12: Real-time motion detection. Mouse image (upper) and motion Mn

(lower) is plotted. High values of Mn indicate increased activity. Click here for video.

presence or absence of motion). These constraints are difficult to overcome especially

for different image background, color and lighting.

In this thesis, a simple motion detection algorithm using mean squared difference

between successive images is used. Specifically, given two N x M images Xij and Yij,

where i and j are coordinates for the ith and jth pixel respectively, motion Mn is

calculated as

Mn =
1

NM

N∑

i=1

M∑

j=1

(Yij −Xij)
2 (2.8)

Increased level of activity results in Mn À 0 while minimum activity decreases

Mn towards 0 (see Fig. 2-12). Successive images are taken 1 second apart and Mn is

calculated using Matlab (see Fig 2-12). Details of the algorithm implementation will

be discussed in the appendix.
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Chapter 3

Results

3.1 Overview

In this chapter, HRV variables in similar physiological states (activity index) are

computed and possible trends are determined. Mouse HRV and physiological state

are estimated for every 30 second epoch. The number of RR intervals in a 30 second

time frame in mice corresponds to about a 5 minute time epoch in humans, which is

the recommended length for short-term HRV analysis [1].

Daily (7am-7am) averages of the HRV indices including lights on (7am-7pm) and

lights off (7pm-7am) are presented. The length of the data obtained ranges from five

to nineteen days. The focus of this thesis is to determine if HRV has prognostic value

in mice with CHD (dKO mice). Normal mice (wild type) are also used to look at

similarities and differences in HRV. For normal mice, ECG recordings are terminated

after ten days. However, in the dKO mice, recordings are discontinued immediately

after they expire. Because of the possible effects of pain and anesthesia after surgical

implantation of ECG electrodes, dKO mice that die less than 4 days after surgery are

excluded. The Hermes identification numbers of all the mice used are located in the

appendix.
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3.2 HRmean and SDNN

In figure 3-1, HRmean ( 60
RRmean

) and SDNN are plotted as a function of age in days.

Mouse heart rate typically oscillates within a range of values on a given day (see Fig.

3-2). In the dKO mouse, HRmean is statistically (p < 0.01, Student’s T test) lower

than the normal mouse (see Fig. 3-1, 3-2 and 3-3). In fact, HRmean in normal mice

is always greater than 400 bpm. In contrast, in the dKO group, HRmean periodi-

cally drops below 400 bpm (see Fig. 3-1). Figure 3-4 shows the daily percentage of

HRmean < 400 bpm in dKO mice.

SDNN in the dKO mouse is slightly higher than the normal mouse but not

statistically significant (see Fig. 3-7). In figure 3-2, a close up view of HRmean and

SDNN is shown. Observe that as HRmean decreases SDNN increases. Decreasing

heart rate is a result of a shift in sympathovagal balance towards the parasympathetic

component of the autonomic nervous system. This observation is consistent with the

study done by Gehrmann et. al. [4]. As seen in figure 1-13, after sympathetic

blockade, this results in a decrease in heart rate and an increase in SDNN .

In most dKO mice (4 out of 6), daily averages of HRmean (figure 3-3) continue

to decrease as the heart disease progresses and reaches minimum around the day

they expire. Others die of sudden death possibly due to a massive MI. This event is

captured in one of the dKO mice. In figure 3-5, notice that this mouse had a sudden

drop in heart rate around the 34th day of life and expired. The ECG shows heart

block followed by ST segment elevation (see Fig. 3-6).

Daily average of SDNN seems to increase in 3 dKO mice (see Fig. 3-7). This

observation is not consistent with a study done in humans who survived an acute

myocardial infarction (AMI) [2]. In the human study, patients with higher SDNN

after an AMI are more likely to survive. However, humans with poor prognosis usually

develop congestive heart failure (CHF). It has not been documented that the dKO

mice also develop CHF.

In the following sections, HRV metrics are measured in similar physiological states

using ECG derived activity index discussed in the previous chapter. Boundaries
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for the components of the activity index are determined and examples as well as

illustrations are presented.

3.3 Activity Index and Motion Detection

In order to determine the boundaries or thresholds for the components of ECG derived

activity index, simultaneous ECG and image recordings are done in a normal (wild

type) and dKO mouse. Mean heart rate (HRmean), ECGindex, motion index Mn and

CRCindex are calculated and plotted in figure 3-8. Notice that increasing values of Mn

are consistent with higher HRmean and low values of ECGindex as well as CRCindex.

Similarly, the opposite is true for decreasing values of Mn. It is important to point

out that absence of ECG noise (ECGindex close to 1) does not always translate to

decreasing activity (see lower plot in figure 3-8). Motion and movement artifacts are

sometimes not seen on the ECG due to good electrode placement.

As mentioned in the previous chapter, the components for activity index involve

heart rate, ECGindex and CRCindex. However, since the range of HRmean is different

for each mouse especially for dKO’s, using a threshold for the HRmean is not a reliable

determinant for activity. For this reason, HRmean is excluded as one of the compo-

nents of activity index. Fortunately, HRmean is not a big factor since high CRCindex

and ECGindex usually correspond to low HRmean in both normal and dKO mice (see

Fig. 3-8).

In figure 3-9, scatter plots of ECGindex, CRCindex and 30 second average of mo-

tion Mn are shown. The average Mn is used because ECGindex and CRCindex are

computed in 30 second segments while Mn is calculated every second. Reasonable

thresholds for ECGindex and CRCindex are ECGindex > 0.7 AND CRCindex > 0.4.

The physiological state of the mouse is assumed to be sleep during the 30 second

segment that satisfies both conditions (see Fig. 3-9) [23]. The number of sleep seg-

ments detected in each group are plotted in figure 3-10 and 3-11. Notice that some

dKO mice have less periods of sleep than the normal group. In addition, the number

of sleep segments in normal mice are relatively stable across all days compared to the
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dKO group. Moreover, since mice are nocturnal animals, there are less sleep segments

detected at night in normal mice. However, the dKO mice seem to have more sleep

segments during dark periods.

3.4 Heart Rate Variability in Sleep

In this section, HRV variables are calculated in physiological states assumed to be

sleep. Sleep states of the mouse are estimated by the ECGindex and CRCindex using

the conditions stated above. Daily, lights on, and lights off averages of HRV metrics

during sleep are plotted in bar graphs and shown in this section on both normal and

dKO mice.

3.4.1 Time Domain

Figure 3-12 and 3-13 shows average HRmean and SDNN bar graphs. Increasing

SDNN in 3 dKO mice (DKO 1, 2 and 3) and 2 normal (Normal 3 and 4) mice are

visible in figure 3-13. There are no significant differences in average SDNN in both

groups.

Average HRmean in the dKO mice is significantly lower than the normal group.

In addition, some dKO mice have a decreasing trend in average HRmean towards the

end of life (DKO 3, 4, 5 and 6). Furthermore, during the final days before these

mice expire, lights out averages are mostly lower than lights on averages. This indi-

cates that bradycardic events in dKO mice occurs during dark periods. Bradycardic

episodes are sometimes caused by a 2 to 1 heart block. The reason as to why these

episodes often occur at night is unclear.

3.4.2 Frequency Domain

In the frequency domain, there are no identifiable trends in low frequency (LFnorm,

Fig. 3-14) or high frequency (HFnorm, Fig. 3-15) power including the LF
HF

(Fig.

3-16) ratio in all dKO mice. There are also no significant differences in frequency
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domain variables between dKO and normal mice. However, the LF
HF

ratio during lights

on is higher than lights off in normal mice. This indicates a stronger sympathetic

dominance during the lights on period in the normal group. This suggests that even

though mice sleep more during daytime, they might spend less time in deep sleep

compared to nights. The LF
HF

ratio in dKO mice seems opposite to that of the normal

mice (i.e. LF
HF

ratio higher in dark period).

Figure 3-1: Mean heart rate HRmean (bpm) (top) and standard deviation of RR
intervals SDNN (seconds)(lower) every 30 seconds in normal and dKO mouse.

47



Figure 3-2: A closer view of mean heart rate HRmean (bpm) (top) and standard
deviation of RR intervals SDNN (seconds) (lower) in normal and dKO mouse.
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Figure 3-3: Daily (7am-7am) average HRmean. Normal (upper) and dKO (lower)
mice.
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Figure 3-4: Daily (7am-7am) percentage of HRmean < 400 bpm. HRmean computes
every 30 seconds.
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Figure 3-5: HRmean of a dKO mouse. Notice the sudden drop in heart rate on the
34th day of life. Click here for video.

Figure 3-6: ECG of a dKO mouse. Heart block followed by an increase in ST segment
shift. a) 12-second rhythm strip. b) Expanded view of seconds 1-2. Sinus pause
followed by junctional escape beat. c) Expanded view of seconds 11-12. Sinus rhythm
with ST segment elevation.
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Figure 3-7: Daily (7am-7am) average SDNN . Normal (upper) and dKO (lower)
mice.
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Figure 3-8: Normal mouse (upper figure) and dKO mouse (lower figure). From top
to bottom: Mean heart rate HRmean (bpm), ECGindex, motion Mn and CRCindex.
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Figure 3-9: Scatter plot. ECGindex vs. average Mn (upper). Triangles represent data
points that also have CRCindex > 0.4. CRCindex vs. ECGindex (lower). Points inside
the rectangle in the bottom figure assumes the mouse is sleeping (ECGindex > 0.7
AND CRCindex > 0.4).
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Figure 3-10: . Number of 30 second sleep segments detected in normal mice.
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Figure 3-11: . Number of 30 second sleep segments detected in dKO mice.
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Figure 3-12: Daily (7am-7am), lights on (7am-7pm) and lights off (7pm-7am) HRmean

averages in normal (upper) and dKO (lower) mice during sleep.
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Figure 3-13: Daily (7am-7am), lights on (7am-7pm) and lights off (7pm-7am) SDNN
averages in normal (upper) and dKO (lower) mice during sleep.
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Figure 3-14: Low frequency (LF) power. Daily (7am-7am), lights on (7am-7pm) and
lights off (7pm-7am) averages in normal and dKO mice during sleep.
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Figure 3-15: High frequency (HF) power. Daily (7am-7am), lights on (7am-7pm) and
lights off (7pm-7am) averages in normal and dKO mice during sleep.
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Figure 3-16: Low/high frequency ratio ( LF
HF

). Daily (7am-7am), lights on (7am-7pm)
and lights off (7pm-7am) averages in normal and dKO mice during sleep.
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Chapter 4

Discussion and Conclusion

Advances in genetic engineering have made the mouse the animal of choice to model

human CHD. Genetically engineered dKO mice that exhibit similar symptoms as

human CHD have been developed in the Kreiger lab at MIT [3]. In humans, the

influence of myocardial ischemia and infarction on the autonomic control of the heart

has been well investigated [2, 7, 14, 16, 18]. For decades, HRV has been used as

a tool to assess activity of the autonomic nervous system. It has been found that

depressed HRV is a powerful predictor of mortality in patients after an acute MI

[2]. The physiological mechanism of decreased HRV is thought to reflect a shift in

sympathovagal balance characterized by a relative sympathetic dominance and/or a

reduced parasympathetic activity. Due to the prognostic value of HRV in humans,

this thesis has studied the impact of CHD on the role of the autonomic nervous system

on heart rate dynamics in the mouse model using HRV analysis.

Although there are accepted standards for measuring HRV metrics in humans,

there are no such standards in mice. The calculation of HRV metrics in mice used in

this thesis is based on human standards appropriately scaled by a factor of 10 due to

heart and respiratory rate differences between the two species [4].

In chapter 2, the details of calculating traditional HRV variables were discussed

including signal processing techniques to extract the RR interval time series and a

method to estimate physiological state from the ECG. RR intervals were obtained

using a mouse adapted version of Pan and Tompkins QRS detector. The Pan and
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Tompkins QRS detector was shown to perform very well on mouse ECG and even

better than the wqrs detector, especially for noisy segments.

In order to compare physiological measurements (HRV) at different times, it is

always important to know the physiological state of the mouse. Chapter 2 described

a novel method to estimate physiological state using ECG noise (ECGindex) and the

coupling of the EDR and RSA signal (CRCindex). An activity index was developed

by applying thresholds on both ECGindex and CRCindex which classified sleep and

non-sleep states in the mouse. A motion detector using a commercially available

camera was built to validate the ECG derived activity metric. It was found that this

metric provided a reliable activity index.

In chapter 3, results of the HRV measurements were presented. As CHD pro-

gressed, there was no evidence of any identifiable trend in HRV metrics in the dKO

mice. Time and frequency domain variables did not show any prognostic value. Mean

heart rate (HRmean) has shown some predictive power of mortality, but it was not

consistent in all the dKO mice. However, HRmean was the only metric that could

separate dKO and normal mice. Normal mice had HRmean that was always greater

than 400 bpm while HRmean in the dKO mice periodically dropped below this thresh-

old (Fig. 3-4). Although some dKO mice die of sudden cardiac death, a few of them

have a unique behavior characterized by about a 50% drop in heart rate that can last

for a few hours followed by a recovery period that resets the heart to its normal rate

(Fig. 3-1). Additionally, the bradycardic episodes usually occurred in dark periods.

The mechanism behind this phenomenon is still a mystery.

In regards to the activity index to detect sleep, the number of sleep segments

during the day were higher compared to night in normal mice. This observation was

consistent since mice are known to be more active at night. However, this observation

seems opposite in the dKO mice. The reason for this cannot be explained.

In the frequency domain, the LF
HF

ratio during the day was higher than at night

in control mice. This could indicate that normal mice spent more time in deep sleep

at night compared to daytime when they are less active. However, this ratio seemed

to be reversed in the dKO mice. A possible explanation for this is that myocardial
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ischemia and infarctions might have occurred more frequently at night which could

be accompanied by an increase in sympathetic activity.

Finally, although it was found that HRV was not helpful in predicting mortality

in dKO mice, future research might focus on using the activity index developed in

this thesis in conjunction with other possible prognostic measure such as ST segment

analysis. Also, the camera used in this thesis will be adapted to the Hermes Server

to simultaneously monitor mouse activity and ECG. This will be very useful tool in

future research on the dKO mouse.
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Appendix A

Power and Cross-Spectral Density

The Einstein-Wiener-Khinchin theorem states that the power spectral density Sxx(f)

of a wide-sense stationary random process X(t) is given by the Fourier transform of

the its autocorrelation function Rxx(τ) [28]:

Sxx(f) = F [Rxx(τ)], (A.1)

where F [.] indicates taking the Fourier transform.

In real applications, signals usually have one realization. Since power spectral

density is a statistical measure, Sxx(f) is commonly estimated using Welch’s method.

This method is carried out by dividing the time signal into successive (sometimes

overlapping) blocks and averaging the periodogram of the signal blocks. Let P i
xx(f)

be the periodogram of the ith block. Then the power spectral density can be estimated

by

Sxx(f) = E [|P i
xx(f)|2], (A.2)

where E [.] denotes averaging across all blocks indexed by i. In general, P i
xx(f) is

always real for all i’s.

The notion of power spectral density can also be generalized to two jointly wide-

sense stationary process X(t) and Y (t) [28]. The cross-spectral density Sxy(f) is

defined by
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Sxy(f) = F [Rxy(τ)], (A.3)

where Rxy(τ) is the cross-correlation between X(t) and Y (t).

The Welch’s method in equation A.2 can also be applied to estimate the cross-

spectral density. However, the order in which to take the squaring and averaging have

a significant impact on the results. The cross-spectral density can be calculated in

two ways:

A(f) = E [|P i
xy(f)|2] (A.4)

and

Θ(f) = |E [P i
xy(f)]|2, (A.5)

where P i
xy(f) is the cross-periodogram of the ith block. In general, Pxy(f) is

complex even if X(t) and Y (t) are real. Since A(f) is calculated by taking the

magnitude squared of Pxy(f) in each block followed by averaging, it corresponds

to the frequency coupling of the two signals due to the oscillation amplitudes only.

Similarly, since Θ(f) is computed by first averaging the real and imaginary parts of

Pxy(f) across all blocks followed by magnitude squaring, it measures the consistency

in phase of the oscillations across all blocks. A(f) and Θ(f) is used as a measure for

cardiorespiratory coupling (CRC) in equation 2.7. The calculation of CRC is slightly

different than the cardiopulmonary coupling (CPC) in [23].

A.1 A Simple Example

x1(t) and y(t) are sinusoidal signals with a frequency of 1 Hz and 3 Hz respectively.

Also, x2(t) is a sinusoidal signal with the same frequency as x1(t) with an offset at

10 and 20 seconds (see Figure A-1).

Let,

z1(t) = x1(t) + y(t) and
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z2(t) = x2(t) + y(t).

The two signals, z1(t) and z2(t), are then divided into 3 sections (0-10, 10-20 and

20-30 seconds). A(f) and Θ(f) between z1(t) and z2(t) are computed and plotted

in figure A-2. Observe that Θ(f) at 1 Hz is lower due to the phase inconsistency of

x2(t). Note that A(f) will be equal to the power spectral density of the signal z1(t).

Figure A-1: x1(t) (top), x2(t) (middle) and y(t) (bottom). Note the offset at 10 and
20 seconds on the signal x2(t)

Figure A-2: A(f) (upper) and Θ(f) (lower).
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Appendix B

Motion Detection

A block diagram of the monitoring system is illustrated in figure B-1. The functions

and interactions of each block are as follows:

1. The Hermes server, FTP server (Windows XP) and the cameras are connected

on the same network with unique IP addresses for each.

2. Each camera FTP’s JPEG images at 1 second intervals onto the FTP server in

specified folders. Each folder is unique for each camera.

3. To start recording, Hermes server writes a file to the FTP server to start record-

ing on a specific camera.

4. Matlab, in the FTP server, looks at the specified camera folder for JPEG images.

Matlab then loads successive images and computes motion index Mn (equation

2.8) starting at a specified time. If there are no images or images are not

uploaded for 60 seconds (default) or any time length, Matlab sends a command

to the power control module to reboot the camera. If absence of images persists

after a specified time, Matlab emails an error message. If recording is not started

or stopped by Hermes on a specific camera, Matlab will keep deleting the JPEG

files on the camera folder.

5. Matlab saves the motion indices Mn in a file (name.motion) and the correspond-

ing JPEG filenames in a separate file (name.image) every 10 minutes (default)
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or any time length. The files are named sequentially. JPEG, name.motion and

name.image files can either be sent to the Hermes server or saved in a local

directory.

6. To stop recording, Hermes server writes a file to the FTP server to stop recording

on a specific camera.

7. Matlab stops recording at a specific time and the cycle can repeat.

Figure B-1: Block diagram.
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Appendix C

Hermes Identification Numbers

Mouse Hermes ID Mouse Hermes ID

DKO 9050040505 Normal 5463040105

DKO 1 0920122903 Normal 1 9399111603

DKO 2 0921122903 Normal 2 9907120503

DKO 3 0922122903 Normal 3 9908120503

DKO 4 0902122703 Normal 4 9909120503

DKO 5 4630040604

DKO 6 3222031004
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