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Abstract— In this paper, a three dimensional dynamic model
of the electrical activity of the heart is presented. The model is
based on the single dipole model of the heart and is later related
to the body surface potentials through a linear model which
accounts for the temporal movements and rotations of the cardiac
dipole, together with a realistic ECG noise model. The proposed
model is also generalized to maternal and fetal ECG mixtures
recorded from the abdomen of pregnant women in single and
multiple pregnancies. The applicability of the model for the
evaluation of signal processing algorithms is illustrated using
Independent Component Analysis. Considering the difficulties
and limitations of recording long-term ECG data, especially from
pregnant women, the model described in this article may serve
as an effective means of simulation and analysis of a wide range
of ECGs, including adults and fetuses.

I. INTRODUCTION

The electrical activity of the cardiac muscle and its relation-
ship with the body surface potentials, namely the Electrocar-
diogram (ECG), has been studied with different approaches
ranging from single dipole models to activation maps [1]. The
goal of these models is to represent the cardiac activity in the
simplest and most informative way for specific applications.
However, depending on the application of interest, any of
the proposed models have some level of abstraction, which
makes them a compromise between simplicity, accuracy, and
interpretability for cardiologists. Specifically, it is known that,
the single dipole model and its variants [1], are equivalent
source descriptions of the true cardiac potentials. This means
that they can only be used as far-field approximations of
the cardiac activity, and do not have evident interpretations
in terms of the underlying electrophysiology [2]. However,
despite these intrinsic limitations, the single dipole model still
remains a popular model, since it accounts for 80% to 90%
of the power of the body surface potentials [2], [3].

Statistical decomposition techniques such as Principal Com-
ponent Analysis (PCA) [4], [5], [6], [7], and more recently
Independent Component Analysis (ICA) [6], [8], [9], [10] have
been widely used as promising methods of multi-channel ECG
analysis, and noninvasive fetal ECG extraction. However, there
are many issues such as the interpretation, stability, robustness,
and noise-sensitivity of the extracted components. These issues
are left as open problems and require further studies by using
realistic models of these signals [11]. Note that, most of

these algorithms have been applied blindly, meaning that the a
priori information about the underlying signal sources and the
propagation media have not been considered. This suggests
that by using additional information such as the temporal
dynamics of the cardiac signal (even through approximate
models such as the single dipole model), we can improve the
performance of existing signal processing methods. Examples
of such improvements have been previously reported in other
contexts ([12] chapters 11 and 12).

In recent years research has been conducted towards the
generation of synthetic ECG signals to facilitate the testing
of signal processing algorithms. Specifically, in [13], [14] a
dynamic model has been developed, which reproduces the
morphology of the PQRST complex and their relationship
to the beat-to-beat (RR-interval) timing in a single nonlinear
dynamic model. Considering the simplicity and flexibility of
this model it is reasonable to assume that it can be easily
adapted to a broad class of normal and abnormal ECGs.
However previous works are restricted to single channel ECG
modeling, meaning that the parameters of the model should be
re-calculated for each of the recording channels. Moreover, for
the maternal and fetal mixtures recorded from the abdomen of
pregnant women, there are very few works which have both
considered the cardiac source and the propagation media [4],
[15], [16].

Real ECG recordings are always contaminated with noise
and artifacts; hence besides the modeling of the cardiac
sources and the propagation media, it is very important to have
realistic models for the noise sources. Since common ECG
contaminants are non-stationary and temporally correlated,
time-varying dynamic models are required for the generation
of realistic noises.

In the following, a three dimensional canonical model of
the single dipole vector of the heart is proposed. This model,
which is inspired by the single-channel ECG dynamic model
presented in [13], is later related to the body surface poten-
tials through a linear model that accounts for the temporal
movements and rotations of the cardiac dipole, together with
a model for the generation of realistic ECG noise. The ECG
model is then generalized to fetal ECG signals recorded from
the maternal abdomen. The model described in this article
is believed to be an effective means of providing realistic
simulations of maternal/fetal ECG mixtures in single and
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Fig. 1. The three body axes. Adapted from [3].

multiple pregnancies.

II. THE CARDIAC DIPOLE VS. THE ELECTROCARDIOGRAM

According to the single dipole model of the heart, the
myocardium’s electrical activity may be represented by a time-
varying rotating vector, the origin of which is assumed to be at
the center of the heart as its end sweeps out a quasi-periodic
path through the torso. This vector may be mathematically
represented in the Cartesian coordinates, as follows:

d(t) = x(t)âx + y(t)ây + z(t)âz, (1)

where âx, ây , and âz are the unit vectors of the three body axes
shown in Fig. 1. With this definition, and by assuming the body
volume conductor as a passive resistive medium which only
attenuates the source field [17], any ECG signal recorded from
the body surface would be a linear projection of the dipole
vector d(t), onto the direction of the recording electrode axes
v = aâx + bây + câz:

ECG(t) =< d(t), v >= a · x(t) + b · y(t) + c · z(t) (2)

As a simplified example, consider the dipole source of d(t)
inside a homogeneous infinite volume conductor. The potential
generated by this dipole at a distance of |r| is:

φ(t) − φ0 =
d(t) · r
4πσ|r|3

=
1

4πσ
[x(t)

rx

|r|3
+ y(t)

ry

|r|3
+ z(t)

rz

|r|3
]

(3)
where φ0 is the reference potential, r = rxâx + ry ây + rz âz

is the vector which connects the center of the dipole to the
observation point, and σ is the conductivity of the volume
conductor [3], [17]. Now consider the fact that the ECG signals
recorded from the body surface are the potential differences
between two different points. Equation (3) therefore indicates
how the coefficients a, b, and c in (2) can be related to the
radial distance of the electrodes and the volume conductor
material. Of course, in reality the volume conductor is neither
homogeneous nor infinite, leading to a much more complex
relationship between the dipole source and the body surface
potentials. However even with a complete volume conductor
model, the body surface potentials are linear instantaneous
mixtures of the cardiac potentials [17].

A 3-dimensional vector representation of the ECG, namely
the Vectorcardiogram (VCG), is also possible by using three
of such ECG signals. Basically any set of three linearly
independent ECG electrode leads can be used to construct
the VCG. However, in order to achieve an orthonormal
representation that best resembles the dipole vector d(t), a
set of three orthogonal leads that correspond with the three
body axes are selected. The normality of the representation is
further achieved by attenuating the different leads with a priori
knowledge of the body volume conductor, to compensate for
the non-homogeneity of the body thorax [3]. The Frank lead
system [18], or the corrected Frank lead system [19] which
has better orthogonality and normalization, are conventional
methods for recording the VCG.

Based on the single dipole model of the heart, Dower et
al have developed a transformation for finding the standard
12-lead ECGs from the Frank electrodes [20]. The Dower
transform is simply a 12 × 3 linear transformation between
the standard 12-lead ECGs and the Frank leads, which can
be found from the Minimum Mean Square Error (MMSE)
estimate of a transformation matrix between the two electrode
sets. Apparently the transformation is influenced by the stan-
dard locations of the recording leads and the attenuations of
the body volume conductor, with respect to each electrode
[21]. The Dower transform and its inverse [22], are evident
results of the single dipole model of the heart with a linear
propagation model of the body volume conductor. However,
since the single dipole model of the heart is not a perfect
representation of the cardiac activity, cardiologists usually use
more than three ECG electrodes (between six to twelve) to
study the cardiac activity [3].

III. HEART DIPOLE VECTOR AND ECG MODELING

Different ECG leads can be assumed to be projections of
the heart’s dipole vector onto the recording electrode axes.
All leads are therefore time synchronized with each other and
have a quasi-periodic shape. Based on the single channel ECG
model proposed in [13] (and later updated in [23], [24], and
[25]), the following dynamic model is suggested for the d(t)
dipole vector:

θ̇ = ω

ẋ = −
∑

i

αx
i ω

(bx
i )2

∆θx
i exp[− (∆θx
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2(bx
i )2

]
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(4)

where ∆θx
i = (θ − θx

i )mod(2π), ∆θy
i = (θ − θy

i )mod(2π),
∆θz

i = (θ − θz
i )mod(2π), and ω = 2πf , where f is the

beat-to-beat heart rate. Accordingly, the first equation in (4)
generates a circular trajectory rotating with the frequency of
the heart rate. Each of the three coordinates of the dipole
vector d(t), is modeled by a summation of Gaussian functions
with the amplitudes of αx

i , αy
i , and αz

i ; widths of bx
i , by

i ,
and bz

i ; and located at the rotational angles of θx
i , θy

i , and
θz

i . The intuition behind this set of equations is, that the
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baseline of each of the dipole coordinates is pushed up and
down, as the trajectory approaches the centers of the Gaussian
functions, generating a moving and variable length vector in
the (x, y, z) space. Moreover, by adding some deviations to the
parameters of (4) (i.e. considering them as random variables
rather than deterministic constants), it is possible to generate
more realistic cardiac dipoles with inter-beat variations.

This model of the rotating dipole vector is rather general,
since due to the universal approximation property of Gaussian
mixtures, any continuous function (as the dipole vector is
assumed to be so), can be modeled with a sufficient number
of Gaussian functions up-to an arbitrarily close approximation
[26].

Equation (4) can also be thought as a model for the orthog-
onal lead VCG coordinates, with an appropriate scaling factor
for the attenuations of the volume conductor. This analogy
between the orthogonal VCG and the dipole vector can be used
to estimate the parameters of (4) from the three Frank lead
VCG recordings. As an illustration typical signals recorded
from the Frank leads and the dipole vector modeled by (4)
are plotted in Figs. 2 and 3. The parameters of (4), used for
the generation of these figures are presented in Table I. These
parameters have been estimated from the best MMSE fitting
between N Gaussian functions and the Frank lead signals. As
it can be seen in Table I, the number of the Gaussian functions
are not necessarily the same for the different channels, and can
be selected according to the shape of the desired channel.

A. Multi-channel ECG modeling

The dynamic model in (4) is a representation of the dipole
vector of the heart (or equivalently the orthogonal VCG
recordings). In order to relate this model to realistic multi-
channel ECG signals recorded from the body surface, we need
an additional model to project the dipole vector onto the body
surface by considering the propagation of the signals in the
body volume conductor, the possible rotations and scalings
of the dipole, and the ECG measurement noises. Following
the discussions of section II, a rather simplified linear model
which accounts for these measures and is in accordance with

Fig. 2. Synthetic ECG signals of the Frank lead electrodes

(2) and (3) is suggested as follows:

ECG(t) = H · R · Λ · s(t) + W (t) (5)

where ECG(t)N×1 is a vector of the ECG channels recorded
from N leads, s(t)3×1 = [x(t), y(t), z(t)]T contains the three
components of the dipole vector d(t), HN×3 corresponds
to the body volume conductor model (as for the Dower
transformation matrix), Λ3×3 = diag(λx, λy, λz) is a diagonal
matrix corresponding to the scaling of the dipole in each of
the x, y, and z directions, R3×3 is the rotation matrix for the
dipole vector, and W (t)N×1 is the noise in each of the N
ECG channels at the time instance of t. Note that H , R, and
Λ matrices are generally functions of time.

Although the product of H · R · Λ may be assumed to be
a single matrix, the representation in (5) has the benefit that
the rather stationary features of the body volume conductor
that depend on the location of the ECG electrodes and the
conductivity of the body tissues can be considered in H ,
while the temporal inter-beat movements of the heart can be
considered in Λ and R, meaning that their average values
are identity matrices in a long term study: Et{R} = I ,
Et{Λ} = I . In Appendix I by using the Givens rotation, a
means of coupling these matrices with external sources such
as the respiration and achieving non-stationary mixtures of the
dipole source is presented.

B. Modeling maternal abdominal recordings

By utilizing a dynamic model like (4) for the dipole vector
of the heart, the signals recorded from the abdomen of a
pregnant woman, containing the fetal and maternal heart
components can be modeled as follows:

X(t) = Hm ·Rm ·Λm ·sm(t)+Hf ·Rf ·Λf ·sf (t)+W (t) (6)

where the matrices Hm, Hf , Rm, Rf , Λm and, Λf have
similar definitions as the ones in (5), with the subscripts of
m and f referring to the mother and the fetus, respectively.
Moreover, Rf has the additional interpretation that its mean
value (Et{Rf} = R0) is not an identity matrix and can be
assumed as the relative position of the fetus with respect to
the axes of the maternal body. This is an interesting feature

Fig. 3. Typical synthetic VCG loop. Arrows indicate the direction of rotation.
Each clinical lead is produced by mapping this trajectory onto a 1-D vector
in this 3-dimensional space.
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TABLE I
PARAMETERS OF THE SYNTHETIC MODEL PRESENTED IN (4) FOR THE ECGS AND VCG PLOTTED IN FIGS. 2, 3

Index(i) 1 2 3 4 5 6 7 8 9 10 11
αx

i (mV) 0.03 0.08 -0.13 0.85 1.11 0.75 0.06 0.10 0.17 0.39 0.03
bx
i (rads.) 0.09 0.11 0.05 0.04 0.03 0.03 0.04 0.60 0.30 0.18 0.50

θi(rads.) -1.09 -0.83 -0.19 -0.07 0.00 0.06 0.22 1.20 1.42 1.68 2.90
αy

i (mV) 0.04 0.02 -0.02 0.32 0.51 -0.32 0.04 0.08 0.01
by
i (rads.) 0.07 0.07 0.04 0.06 0.04 0.06 0.45 0.30 0.50 – –

θj (rads.) -1.10 -0.90 -0.76 -0.11 -0.01 0.07 0.80 1.58 2.90
αz

i (mV) -0.03 -0.14 -0.04 0.05 -0.40 0.46 -0.12 -0.20 -0.35 -0.04
bz
i (rads.) 0.03 0.12 0.04 0.40 0.05 0.05 0.80 0.40 0.20 0.40 –

θk(rads.) -1.10 -0.93 -0.70 -0.40 -0.15 0.10 1.05 1.25 1.55 2.80

Fig. 4. Illustration of the fetal and maternal VCGs vs. their body coordinates

for modeling the fetus in the different typical positions such as
Vertex (fetal head-down) or Breech (fetal head-up) positions
[27]. As illustrated in Fig. 4, sf (t) = [xf (t), yf (t), zf (t)]T

can be assumed as a canonical representation of the fetal
dipole vector which is defined with respect to the fetal body
axes, and in order to calculate this vector with respect to
the maternal body axes, sf (t) should be rotated by the 3-
dimensional rotation matrix of R0:

R0 =

 1 0 0
0 cosθx sinθx

0 −sinθx cosθx

 cosθy 0 sinθy

0 1 0
−sinθy 0 cosθy


×

 cosθz sinθz 0
−sinθz cosθz 0

0 0 1

 ,

(7)
where θx, θy , and θz are the angles of the fetal body planes
with respect to the maternal body planes.

The model presented in (6) may be simply extended to
multiple pregnancies (twins, triplets, quadruplets, etc.), by
considering additional dynamic models for the other fetuses.

C. Fitting the model parameter to real recordings

As previously stated, due to the analogy between the
dipole vector and the orthogonal lead VCG recordings, the
number and shape of the Gaussian functions used in (4) can
be estimated from typical VCG recordings. This estimation
requires a set of orthogonal leads, such as the Frank leads, in
order to calibrate the parameters. There are different possible
approaches for the estimation of the Gaussian function para-
meters of each lead. Nonlinear Least Square Error (NLSE)
methods, as previously suggested in [25], [28] have been

proved as an effective approach. Otherwise, one can use the
A∗ optimization approach adopted in [26], or benefit from the
algorithms developed for Radial Basis Functions (RBF) in the
Neural Network context [29]. For the results of this paper, the
NLSE approach has been used.

It should be noted that (4) is some kind of canonical
representation of the heart’s dipole vector; meaning that the
amplitudes of the Gaussian terms in (4) are not the same as
the ones recorded from the body surface. In fact, using (4)
and (5) to generate synthetic ECG signals, there is an intrinsic
indeterminacy between the scales of the entries of s(t) and
the mixing matrix H , since there is no way to record the
true dipole vectors noninvasively. To solve this ambiguity, and
without the loss of generality, it is suggested that we simply
assume the dipole vector to have specific amplitudes, based
on a priori knowledge of the VCG shape in each of its three
coordinates, using realistic body torso models [30].

As mentioned before the H mixing matrix in (5) depends
on the location of the recording electrodes. So in order to
estimate this matrix, we first calculate the optimal parameters
of (4) from the Frank leads of a given database. Next the
H matrix is estimated by using a MMSE estimate between
the synthetic dipole vector and the recorded ECG channels
of the database. In fact by using the previously mentioned
assumption that: Et{R} = I and Et{Λ} = I , the MMSE
solution of the problem is:

Ĥ = E{ECG(t) · s(t)T }[E{s(t) · s(t)T }]−1 (8)

For the case of abdominal recordings the estimation of the
Hm and Hf matrices in (6) are more difficult and require a
priori information about the location of the electrodes and a
model for the propagation of the maternal and fetal signals
within the maternal thorax and abdomen [16]. However, a
coarse estimation of Hm can be achieved for a given con-
figuration of abdominal electrodes by using (8) between the
abdominal ECG recordings and three orthogonal leads placed
close to the mother’s heart for recording her VCG. Yet the
accurate estimation of Hf requires more information about the
maternal body, and more accurate non-homogeneous models
of the volume conductor [4].

The ω term introduced in (4) is in general a time-variant
parameter which depends on physiological factors such as the
speed of electrical wave propagation in the cardiac muscle or
the heart rate variability (HRV) [13]. Furthermore, since the
phase of the respiratory cycle can be derived from the ECG (or
through other means such as amplifying the differential change
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in impedance in the thorax; impedance pneumography) and Λ
is likely to vary with respiration, it is logical that an estimation
of Λ over time can be made from such measurements.

The relative average (static) orientation of the fetal heart
with respect to the maternal cardiac source is represented by
R0 which could be initially determined through a sonogram,
and later inferred by referencing the signal to a large database
of similar-term fetuses. Of course, both Λ and R0 are func-
tions of the respiration and heart rates and therefore tracking
procedures such as Expectation Maximization (EM) [31], or
Kalman Filter (KF) may be required for online adaptation of
these parameters [24], [32].

IV. ECG NOISE MODELING

An important issue that should be considered in the model-
ing of realistic ECG signals is to model realistic noise sources.
Following [33], the most common high-amplitude ECG noises
that cannot be removed by simple in-band filtering, are:
• Baseline Wander (BW)
• Muscle Artifact (MA)
• Electrode Movement (EM)

For the fetal ECG signals recorded from the maternal abdomen
the following may also be added to this list:
• Maternal ECG
• Fetal movements
• Maternal uterus contractions
• Changes in the conductivity of the maternal volume

conductor due to the development of the vernix caseosa
layer around the fetus [4]

These noises are typically very non-stationary in time and
colored in spectrum (having long-term correlations). This
means that white noise or stationary colored noise, are gener-
ally insufficient to model ECG noise. In practice, researchers
have preferred to use real ECG noises such as those found
in the MIT-BIH Non-Stress Test Database (NSTDB) [34],
[35], with varying Signal-to-Noise Ratios (SNRs). However,
as explained in the following, parametric models such as time-
varying Autoregressive (AR) models can be used to generate
realistic ECG noises which follow the non-stationarity and the
spectral shape of real noise. The parameters of this model
can be trained by using real noises such as the NSTDB.
Having trained the model, it can be driven by white noise
to generate different instances of such noises, with almost
identical temporal and spectral characteristics.

There are different approaches for the estimation of time-
varying AR parameters. An efficient approach that was em-
ployed in this work, is to reformulate the AR model estimation
problem in the form of a standard KF [36]. In a recent work, a
similar approach has been effectively used for the time-varying
analysis of the HRV [37].

For the time series of yn, a time-varying AR model of order
p can be described as follows:

yn = −an1yn−1 − an2yn−2 − ... − anpyn−p + vn

= −[yn−1, yn−2, ..., yn−p]


an1

an2

...
anp

 + vn,
(9)

where vn is the input white noise and the ani(i = 1, ..., p)
coefficients are the p time-varying AR parameters at the time-
instance of n. So by defining xn = [an1, an2, ..., anp]T as
a state vector, and hn = −[yn−1, yn−2, ..., yn−p]T , we can
reformulate the problem of AR parameter estimation in the
KF form as follows:{

xn+1 = xn + wn

yn = hT
n xn + vn,

(10)

where we have assumed that the temporal evolution of the
time-varying AR parameters follows a random walk model
with a white Gaussian input noise vector wn. This approach
is a conventional and practical assumption in the KF context
when there is no a priori information about the dynamics of
a state vector [36].

To solve the standard KF equations [36], we also require
the expected initial state vector x̄0 = E{x0}, its covariance
matrix P0 = E{x̄0x̄T

0 }, the covariance matrices of the Process
noise Qn = E{wnwT

n}, and the measurement noise variance
rn = E{vnvT

n }.
x̄0 can be estimated from a global (time-invariant) AR

model fitting over the whole samples of yn, and its covariance
matrix (P0) can be selected large enough to indicate the
imprecision of the initial estimate. The effects of these initial
states are of less importance and usually vanish in time, under
some general convergence properties of KFs.

By considering the AR parameters to be uncorrelated, the
covariance matrix of Qn can be selected as a diagonal matrix.
The selection of the entries of this matrix, depends on the
extent of yn’s non-stationarity. For quasi-stationary noises, the
diagonal entries of Qn are rather small, while for highly non-
stationary noises they are large. Generally the selection of this
matrix is a compromise between convergence rate and stability.
Finally, rn is selected according to the desired variance of the
output noise.

To complete the discussion, the AR model order should also
be selected. It is known that for stationary AR models, there
are information-based criteria such as the Akaike Information
Criterion (AIC) for the selection of the optimal model order.
However, for time-varying models the selection is not as
straightforward since the model is dynamically evolving in
time. In general, the model order should be less than the
optimal order of a global time-invariant model. For example,
in this study an AR order of twelve to sixteen was found
to be sufficient for a time-invariant AR model of BW noise,
using the AIC. Based on this, the order of the time-variant AR
model was selected to be twelve, which led to the generation
of realistic noise samples.

Now having the time-varying AR model, it is possible to
generate noises with different variances. As an illustration, in
Fig. 5 a one minute long segment of BW with a sampling rate
of 360Hz, taken from the NSTDB [34], [38], and the synthetic
BW noise generated by the proposed method are depicted. The
frequency response magnitude of the time-varying AR filter
designed for this BW noise is depicted in Fig. 6. As it can
be seen, the time-varying AR model is acting as an adaptive
filter which is adapting its frequency response to the contents
of the non-stationary noise.
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(a)

(b)

Fig. 5. Typical segment of ECG BW Noise (a) Original (b) Synthetic

Fig. 6. Frequency response magnitudes of 32 segments of the time-varying
AR filters for the Baseline Wander noises of the NSTDB. This figure illustrates
how the AR filter responses are evolving in time.

It should be noted that since the vector hn varies with time,
it is very important to monitor the covariance matrix of the
KF’s error and the innovation signal, to be sure about the
stability and fidelity of the filter.

By using the KF framework it is also possible to monitor the
stationarity of the yn signals, and to update the AR parameters
as they tend to become non-stationary. For this, the variance
of the innovation signal should be monitored, and the KF state
vectors (or the AR parameters) be updated only whenever
the variance of the innovation increases beyond a predefined
value. There have also been some ad hock methods developed,
for updating the covariance matrices of the observation and
process noises and to prevent the divergence of the KF [37].

For the studies in which a continuous measure of the noise
color effect is requires, the spectral shape of the output noise
can also be altered by manipulating the poles of the time-
varying AR model over the unit circle, which is identical to
warping the frequency axis of the AR filter response [39].

V. RESULTS

The approach presented in this work for generating synthetic
ECG signals is believed to have interesting applications from
both the theoretical and practical point of view. Here we shall
study the accuracy of the synthetic model and a special case
study.

TABLE II
THE PERCENTAGE OF MSE IN THE SYNTHETIC VCG CHANNELS USING

FIVE AND NINE GAUSSIAN FUNCTIONS

VCG Channel 5 Gaussians 9 Gaussians
Vx 1.24 0.09
Vy 1.68 0.15
Vz 3.60 0.12

A. The model accuracy

In this example, the model accuracy will be studied for
a typical ECG signal of the Physikalisch-Technische Bunde-
sanstalt Diagnostic ECG Database (PTBDB) [40], [41], [42].
The database consists of the standard twelve channel ECG
recordings and the three Frank lead VCGs. In order to have a
clean template for extracting the model parameters, the signals
are pre-processed by a band-pass filter to remove the baseline
wander and high frequency noises. The ensemble average
of the ECG is then extracted from each channel. Next, the
parameters of the Gaussian functions of the synthetic model
are extracted from the ensemble average of the Frank lead
VCGs by using the nonlinear least squares procedure ex-
plained in section III-C. The Original VCGs and the synthetic
ones generated by using five and nine Gaussian functions are
depicted in Figs. 7(a)–7(c) for comparison. The mean square
error (MSE) of the two synthetic VCGs with respect to the
true VCGs are listed in Table II.

The H matrix defined in (5) may also be calculated by
solving the MMSE transformation between the ECG and the
three VCG channels (similar to (8)). As with the Dower
transform, H can be used to find approximative ECGs from
the three original VCGs or the synthetic VCGs. In Figs. 7(d)–
7(f), the original ECGs of channels V1, V2, and V6, and the
approximative ones calculated from the VCG are compared
with the ECGs calculated from the synthetic VCG using five
and nine Gaussian functions for one ECG cycle. As it can be
seen in these results, the ECGs which are reconstructed from
the synthetic VCG model have significantly improved as the
number of Gaussian functions have been increased from five
to nine, and the resultant signals very well resemble the ECGs
which have been reconstructed from the original VCG by using
the Dower transform. The model improvement is especially
notable, around the asymmetric segments of the ECG such as
the T-wave.

However, it should be noted that the ECG signals which
are reconstructed by using the Dower transform (either from
the original VCG or the synthetic ones), do not perfectly
match the true recorded ECGs, especially in the low amplitude
segments such as the P-wave. This in fact shows the intrinsic
limitation of the single dipole model in representing the low-
amplitude components of the ECG which require more than
three dimensions for their accurate representation [11]. The
MSE of the calculated ECGs of Figs. 7(d)–7(f) with respect
to the true ECGs are listed in Table III.

B. Fetal ECG extraction

We will now present an application of the proposed model
for evaluating the results of source separation algorithms.
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(a) Vx (b) Vy (c) Vz

(d) V1 (e) V2 (f) V6

Fig. 7. Original vs. synthetic VCGs and ECGs using 5 and 9 Gaussian func-
tions. For comparison, the ECG reconstructed from the Dower transformation
is also depicted in (d)-(f) over the original ECGs. The synthetic VCGs and
ECGs have been vertically shifted 0.2mV for better comparison. Refer to text
for details.

TABLE III
THE PERCENTAGE OF MSE IN THE ECGS RECONSTRUCTED BY DOWER

TRANSFORMATION FROM THE ORIGINAL VCG AND FROM THE SYNTHETIC

VCG USING FIVE AND NINE GAUSSIAN FUNCTIONS

ECG Channel Original VCG 5 Gaussians 9 Gaussians
V1 0.78 2.06 0.86
V2 0.67 3.14 0.72
V6 0.16 1.12 0.19

To generate synthetic maternal abdominal recordings, con-
sider two dipole vectors for the mother and the fetus as defined
in (4). The dipole vector of the mother is assumed to have the
parameters listed in Table I with a heart rate of fm = 0.9Hz,
and the fetal dipole is assumed to have the parameters listed
in Table IV, with a heart beat of ff = 2.2Hz. As seen in Table
IV, the amplitudes of the Gaussian terms used for modeling
the fetal dipole have been chosen to be an order of magnitude
smaller than their maternal counterparts.

Further consider the fetus to be in the normal vertex position
shown in Fig. 8, with its head down and its face towards the
right arm of the mother. To simulate this position, the angles
of R0 defined in (7) can be selected as follows: θx = −3π/4
to rotate the fetus around the x axis of the maternal body to
place it in the head-down position, θy = 0 to indicate no fetal
rotation around the y axis, and θz = −π/2 to rotate the fetus

TABLE IV
PARAMETERS OF THE SYNTHETIC FETAL DIPOLE USED IN SECTION V-B

Index(i) 1 2 3 4 5
αx

i (mV) 0.007 -0.011 0.13 0.007 0.028
bx
i (rads.) 0.1 0.03 0.05 0.02 0.3

θi(rads.) -0.7 -0.17 0 0.18 1.4
αy

i (mV) 0.004 0.03 0.045 -0.035 0.005
by
i (rads.) 0.1 0.05 0.03 0.04 0.3

θj (rads.) -0.9 -0.08 0 0.05 1.3
αz

i (mV) -0.014 0.003 -0.04 0.046 -0.01
bz
i (rads.) 0.1 0.4 0.03 0.03 0.3

θk(rads.) -0.8 -0.3 -0.1 0.06 1.35

Fig. 8. Model of the maternal torso, with the locations of the maternal and
fetal hearts and the simulated electrode configuration

towards the right arm of the mother1.
Now according to (6), to model maternal abdominal signals,

the transformation matrices of Hm and Hf are required, which
depend on the maternal and fetal body volume conductor as
the propagation medium. As a simplified case consider this
volume conductor to be a homogeneous infinite medium which
only contains the two dipole sources of the mother and the
fetus. Also consider five abdominal electrodes with a reference
electrode of the maternal navel, and three thoracic electrode
pairs for recording the maternal ECGs, as illustrated in Fig. 8.
This electrode configuration is in accordance with real mea-
surement systems presented in [9], [43], [44], in which several
electrodes are placed over the maternal abdomen and thorax
to record the fECG in any fetal position without changing
the electrode configuration. From the source separation point
of view, the maximal spatial diversity of the electrodes with
respect to the signal sources such as the maternal and fetal
hearts is expected to improve the separation performance. The
location of the maternal and fetal hearts and the recording
electrodes are presented in Table V for a typical shape of a
pregnant woman’s abdomen. In this table, the maternal navel
is considered as the origin of the coordinate system.

Previous studies have shown that low conductivity layers
which are formed around the fetus (like the vernix caseosa)
have great influence on the attenuation of the fetal signals. The
conductivity of these layers has been measured to be about
106-times smaller than their surrounding tissues; meaning that
even a very thin layer of these tissues has considerable effect

1The negative signs of θx, θy , and θz are due to the fact that by definition,
R0 is the matrix which transforms the fetal coordinates to the maternal
coordinates.
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TABLE V
THE SIMULATED ELECTRODE AND HEART LOCATIONS *

Abdominal leads Thoracic lead pairs Heart locations
Index 1 2 3 4 5 6+ 6− 7+ 7− 8+ 8− Maternal heart Fetal heart
x (cm) -5 -5 -5 -5 -5 -10 -35 -10 -10 -10 -10 -25 -15
y (cm) -7 -7 7 7 -1 10 10 0 10 10 10 7 -4
z (cm) 7 -7 7 -7 -5 18 18 15 15 18 24 20 2
* The maternal navel is assumed as the center of the coordinate system and the reference electrode for the
abdominal leads.

Fig. 9. Synthetic mixture of the maternal and fetal VCGs, using a
combination of the leads defined in Table V.

on the fetal components [4]. The complete solution of this
problem which encounters the conductivities of different layers
of the body tissues requires a much more sophisticated model
of the volume conductor, which is beyond the scope of this
example. For simplicity we define the constant terms in (3) as
κ

.= 1
4πσ , and assume κ = 1 for the maternal dipole and κ =

0.1 for the fetal dipole. These values of κ lead to simulated
signals having maternal to fetal peak-amplitude-ratios, that are
in accordance with real abdominal measurements such as the
DaISy database [43].

Using (2) and (3), the electrode locations, and the volume
conductor conductivities, we can now calculate the coefficients
of the transformation between the dipole vector and each of the
recording electrodes for both the mother and the fetus (Table
VI).

The next step is to generate realistic ECG noise. For this
example a one minute mixture of noises has been produced by
summing normalized portions of real baseline wander, muscle
artifacts, and electrode movement noises of the NSTDB [38],
[34]. The time-varying AR coefficient described in section
IV, may be calculated for this mixture. We can now generate
different instances of synthetic ECG noise by using different
instances of white noise as the input of the time-varying AR
model. Normalized portions of these noises can be added to
the synthetic ECG to achieve synthetic ECGs with desired
SNRs.

A five second segment of eight maternal channels generated
with this method can be seen in Fig. 10. In this example, the
SNR of each channel is 10dB. Also as an illustration, the 3-D
VCG loop constructed from a combination of three pairs of
the electrodes are depicted in Fig. 9.

As previously mentioned, the multi-channel synthetic

recordings described in this article can be used to study
the performance of the signal processing tools previously
developed for ECG analysis. As a typical example, the JADE
ICA algorithm [45] was applied to the eight synthetic chan-
nels to extract eight independent components. The resultant
Independent Components (ICs) can be seen in Fig. 11.

According to these results, three of the extracted ICs cor-
respond to the maternal ECG, and two with the fetal ECG.
The other channels are mainly the noise components, but still
contain some element of the fetal R-peaks. Moreover some
peaks of the fetal components are still valid in the maternal
components, meaning that ICA has failed to completely sep-
arate the maternal and fetal components.

To explain these results, we should note that the dipole
model presented in (4) has three linearly independent dimen-
sions. This means that if the synthetic signals were noiseless,
we could only have six linearly independent channels (three
due to the maternal dipole and three due to the fetal), and
any additional channel would be a linear combination of the
others. However, for noisy signals additional dimensions are
introduced which correspond to noise. In the ICA context, it is
known that the ICs extracted from noisy recordings can be very
sensitive to noise. In this example in particular, the co-planar
components of the maternal and fetal subspaces are more
sensitive and may be dominated by noise. This explains why
the traces of the fetal component are seen among the maternal
components, instead of being extracted as an independent
component [11]. The quality of the extracted fetal components
may be improved by denoising the signals with e.g. wavelet
denoising techniques, before applying ICA [10].

This example demonstrates that by using the proposed
model for body surface recordings with different source sep-
aration algorithms, it is possible to find interesting interpreta-
tions and theoretical bases for previously reported empirical
results.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper a three dimensional model of the dipole vector
of the heart was presented. The model was then used for the
generation of synthetic multi-channel signals recorded from
the body surface of normal adults and pregnant women. A
practical means of generating realistic ECG noises, which
are recorded in real conditions, was also developed. The
effectiveness of the model, particularly for fetal ECG studies,
was illustrated through a simulated example. Considering the
simplicity and generality of the proposed model, there are
many other issues which may be addressed in future works,
some of which will now be described.
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TABLE VI
THE CALCULATED MIXING MATRICES FOR THE MATERNAL AND FETAL DIPOLE VECTORS

HT
m = 10−3 ×

2
4

0.23 −0.30 0.76 −0.18 −0.15 12.41 −0.70 −0.20
−0.46 −0.09 0.20 0.20 −0.02 −1.68 −2.07 −0.04
−0.05 0.01 −0.39 −0.14 −0.13 1.12 0.23 −2.21

3
5

HT
f = 10−3 ×

2
4

0.25 −0.01 −0.13 −0.20 0.11 0.13 0.10 0.04
−0.30 −0.22 0.18 0.11 0.05 0.08 −0.05 0.11
0.37 −0.29 0.18 −0.12 −0.30 0.09 0.26 0.05

3
5

(a) Channel 1 (b) Channel 2 (c) Channel 3 (d) Channel 4

(e) Channel 5 (f) Channel 6 (g) Channel 7 (h) Channel 8

Fig. 10. Synthetic multi-channel signals from the maternal abdomen (channels 1-5) and thorax (channels 6-8). Notice the small fetal components with a
frequency almost twice the maternal heart rate in the abdominal channels.

(a) IC 1 (b) IC 2 (c) IC 3 (d) IC 4

(e) IC 5 (f) IC 6 (g) IC 7 (h) IC 8

Fig. 11. Independent Components (ICs) extracted from the synthetic multi-channel recordings. Strong maternal presence can be seen in the first three
components. Fetal cardiac activity can be clearly seen in the last three components.

In the presented results, an intrinsic limitation of the single
dipole model of the heart was shown. To overcome this lim-
itation, more than three dimensions may be used to represent
the cardiac dipole model in (4). In recent works it has been
shown that up to five or six dimensions may be necessary for
the better representation of the cardiac dipole [11].

In future works, the idea of extending the single dipole

model to moving dipoles which have higher accuracies, can
also be studied [2]. For such an approach, the dynamic
representation in (4) can be very useful. In fact the moving
dipole would be simply achieved by adding oscillatory terms to
the x, y, and z coordinates in (4), to represent the speed of the
heart’s dipole movement. In this case, besides the modeling
aspect of the proposed approach, it can also be used as a
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model-based method of verifying the performance of different
heart models.

Looking back to the synthetic dipole model in (4), it is
seen that this dynamic model could have also been presented
in the direct form (by simply integrating these equations with
respect to time). However the state-space representation has
the benefit of allowing the study of the evolution of the signal
dynamics using state-space approaches [36]. Moreover the
combination of (4) and (5) can be effectively used as the
basis for Kalman filtering of noisy ECG observations, where
(4) represents the underlying dynamics of the noisy recorded
channels. In some related works, the authors have developed
a nonlinear model-based Bayesian filtering approach (such
as the Extended Kalman Filter) for denoising single channel
ECG signals [24], [32], [46], which led to superior results
compared with conventional denoising techniques. However,
the extension of such proposed approaches for multichannel
recordings requires the multi-dimensional modeling of the
heart dipole vector which is presented in this paper. In fact,
multiple ECG recordings can be used as multiple observations
for the Kalman filtering procedure, which is believed to further
improve the denoising results. The Kalman filtering framework
is also believed to be extensible to the filtering and extraction
of fetal ECG components. In this case the dynamic evolutions
of the fetal and maternal dipoles are modeled with (4), and
(6) can be assumed as the observation equation.

Following the discussions in section III, it is known that
Gaussian mixtures are capable of modeling any ECG signal,
even with asymmetric shapes such as the T-wave (which is
rather common in real recordings). However in these cases,
two or more Gaussian terms or a log-normal function may be
required to model the asymmetric shape. For such applications,
it could be simpler to substitute the Gaussian functions with
naturally asymmetric functions, such as the Gumbel function
which has a Gaussian shape that is skewed towards the right-
or left-side of its peak [47]. A log-normal distribution may
give the same results as the Gumbel, but the Gumbel function
allows a more intuitive parameterization in terms of the width
and hence onsets and offsets in the ECG. This may be useful
for determining the end of the T-wave, for example, with a
high degree of accuracy.

APPENDIX I
TIME-VARYING VOLUME CONDUCTOR MODELS

As mentioned in section III, the H , R, and Λ matrices
are generally functions of time, having oscillations which
are coupled with the respiration rate or the heart beat. This
oscillatory coupling may be modeled by using the idea of
Givens rotation matrices [48].

In terms of geometric rotations, any rotation in the N
dimensional space can be decomposed into L = N(N − 1)/2
rotations corresponding to the number of possible rotation
planes in the N dimensional space. This explains why N
dimensional rotation matrices, also known as orthonormal ma-
trices, have only L degrees of freedom. With this explanation,
any orthonormal matrix can be decomposed into L single

rotations, as follows:

R =
∏

i=1...N−1,j=i+1...N

Rij , (11)

where Rij is the Givens rotation matrix of the i–j plane,
derived from an N dimensional identity matrix with the four
following changes in its entries:

Rij(i, i) = cos(θij), Rij(i, j) = sin(θij)
Rij(j, i) = −sin(θij), Rij(j, j) = cos(θij),

(12)

and θij is the rotation angle between the i and j axes, in the
i–j plane. The R0 matrix presented in (7) is a 3-dimensional
example of the general rotation in (11).

Now in order to achieve a time-varying rotation matrix
which is coupled with an external source, such as the res-
piration rate or heart beat (either of the adult or the fetus),
any of the θij rotation angles can oscillate with the external
source frequency, as follows:

θij(t) = θmax
ij sin(2πft) (13)

where θmax
ij is the maximum deviation of the θij rotation

angle, and f is the frequency of the external source. The
axes which are coupled with the oscillatory source, depend on
the nature of the sources of interest and the geometry of the
problem (i.e. the relative location and distance of the sources),
and apparently depending on this geometry other means of
coupling are also possible.

The presented time-varying rotation matrices can be used
to model the rotation matrices of the synthetic ECG models
defined in (5) and (6), or as multiplicative factors for the H
matrices in these equations.
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[1] O. Dössel, “Inverse problem of electro- and magnetocardiography:
Review and recent progress,” Int. J. Bioelectromagnetism, vol. 2,
no. 2, 2000. [Online]. Available: http://www.ijbem.org/volume2/
number2/doessel/paper.htm

[2] A. van Oosterom, “Beyond the dipole; modeling the genesis of the
electrocardiogram,” 100 years Einthoven, pp. 7–15, 2002, the Einthoven
Foundation, Leiden.

[3] J. A. Malmivuo and R. Plonsey, Eds., Bioelectromagnetism, Principles
and Applications of Bioelectric and Biomagnetic Fields. Oxford
University Press, 1995. [Online]. Available: http://butler.cc.tut.fi/
∼malmivuo/bem/bembook

[4] T. Oostendorp, Modeling the Fetal ECG. Ph.D. dissertation, K. U.
Nijmegen, The Netherlands, 1989.

[5] P. P. Kanjilal, S. Palit, and G. Saha, “Fetal ECG extraction from single-
channel maternal ECG using singular value decomposition,” IEEE Trans.
Biomed. Eng., vol. 44, pp. 51–59, Jan. 1997.

[6] P. Gao, E.-C. Chang, and L. Wyse, “Blind Separation of Fetal ECG
from Single Mixture using SVD and ICA,” in Proceedings of ICICS-
PCM 2003, December 2003, pp. 1418–1422.

[7] D. Callaerts, W. Sansen, J. Vandewalle, G. Vantrappen, and
J. Janssens, “Description of a real-time system to extract the fetal
electrocardiogram,” Clinical Physics and Physiological Measurement,
vol. 10, no. 4B, pp. 7–10, 1989. [Online]. Available: http:
//stacks.iop.org/0143-0815/10/7



11

[8] L. de Lathauwer, B. de Moor, and J. Vandewalle, “Fetal electrocar-
diogram extraction by blind source subspace separation,” IEEE Trans.
Biomed. Eng., vol. 47, pp. 567–572, May 2000.

[9] F. Vrins, C. Jutten, and M. Verleysen, “Sensor array and electrode
selection for non-invasive fetal electrocardiogram extraction by indepen-
dent component analysis,” in Independent Componenent Analysis and
Blind Signal Separation, ser. Lecture Notes in Computer Science (LNCS
3195), A. P. C.G. Puntonet, Ed. Springer, 2004, pp. 1017–1024.

[10] B. Azzerboni, F. La Foresta, N. Mammone, and F. C. Morabito, “A new
approach based on wavelet-ica algorithms for fetal electrocardiogram
extraction.” in Proceedings of the 13th European Symposium on Artificial
Neural Networks (ESANN 2005), 2005, pp. 193–198.

[11] R. Sameni, C. Jutten, and M. B. Shamsollahi, “What ICA Provides for
ECG Processing: Application to Noninvasive Fetal ECG Extraction,”
in Proc. of the International Symposium on Signal Processing and
Information Technology (ISSPIT’06), Vancouver, Canada, August 2006,
pp. 656–661.

[12] A. Cichocki and S. Amari, Eds., Adaptive Blind Signal and Image
Processing. John Wiley & Sons Inc., 2003.

[13] P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith, “A
Dynamic Model for Generating Synthetic Electrocardiogram Signals,”
IEEE Trans. Biomed. Eng., vol. 50, pp. 289–294, mar 2003.

[14] P. E. McSharry and G. D. Clifford, ECGSYN - A realistic ECG
waveform generator. [Online]. Available: http://www.physionet.org/
physiotools/ecgsyn/

[15] P. Bergveld and W. J. H. Meijer, “A New Technique for the Supression
of the MECG,” IEEE Trans. Biomed. Eng., vol. BME-28, pp. 348–354,
Apr. 1981.

[16] W. J. H. Meijer and P. Bergveld, “The Simulation of the Abdominal
MECG,” IEEE Trans. Biomed. Eng., vol. BME-28, pp. 354–357, Apr.
1981.

[17] D. B. Geselowitz, “On the Theory of the Electrocardiogram,” Proc.
IEEE, vol. 77, pp. 857–876, Jun. 1989.

[18] E. Frank, “An Accurate, Clinically Practical System For Spatial
Vectorcardiography,” Circulation, vol. 13, no. 5, pp. 737–749, 1956.
[Online]. Available: http://circ.ahajournals.org/cgi/content/abstract/13/5/
737

[19] G. F. Fletcher, G. Balady, V. F. Froelicher, L. H. Hartley, W. L.
Haskell, and M. L. Pollock, “Exercise Standards : A Statement
for Healthcare Professionals From the American Heart Association,”
Circulation, vol. 91, no. 2, pp. 580–615, 2001. [Online]. Available:
http://circ.ahajournals.org

[20] G. E. Dower, H. B. Machado, and J. A. Osborne, “On deriving
the electrocardiogram from vectorcardiographic leads,” Clin. Cardiol.,
vol. 3, p. 87, 1980.

[21] L. Hadzievski, B. Bojovic, V. Vukcevic, P. Belicev, S. Pavlovic,
Z. Vasiljevic-Pokrajcic, and M. Ostojic, “A novel mobile transtelephonic
system with synthesized 12-lead ECG,” IEEE Trans. Inform. Technol.
Biomed., vol. 8, pp. 428–438, Dec. 2004.

[22] L. Edenbrandt and O. Pahlm, “Vectorcardiogram synthesized from a 12-
lead ECG: Superiority of the inverse Dower matrix,” J. Electrocardiol.,
vol. 21, p. 361, 1988.

[23] G. D. Clifford and P. E. McSharry, “A realistic coupled nonlinear
artificial ECG, BP, and respiratory signal generator for assessing noise
performance of biomedical signal processing algorithms,” Proc of SPIE
International Symposium on Fluctuations and Noise, vol. 5467, no. 34,
pp. 290–301, 2004.

[24] R. Sameni, M. B. Shamsollahi, C. Jutten, and M. Babaie-Zadeh, “Fil-
tering Noisy ECG Signals Using the Extended Kalman Filter Based on
a Modified Dynamic ECG Model,” in Proceedings of the 32nd Annual
International Conference on Computers in Cardiology, Lyon, France,
September 25-28 2005, pp. 1017–1020.

[25] G. Clifford, “A novel framework for signal representation and source
separation,” Journal of Biological Systems, vol. 14, no. 2, pp. 169–183,
June 2006.

[26] J. Ben-Arie and K. Rao, “Nonorthogonal representation of signals by
Gaussians and Gabor functions,” IEEE Trans. Circuits Syst. II, vol. 42,
no. 6, pp. 402–413, June 1995.

[27] Fetal Positions, WebMD Inc. [Online]. Available: http://www.webmd.
com/content/tools/1/slide fetal pos.htm

[28] G. D. Clifford, A. Shoeb, P. E. McSharry, and B. A. Janz, “Model-based
filtering, compression and classification of the ECG,” International
Journal of Bioelectromagnetism, vol. 7, no. 1, pp. 158–161, May 2005.

[29] C. Bishop, Neural Networks for Pattern Recognition. New York: Oxford
University Press, 1995.

[30] L. Weixue and X. Ling, “Computer simulation of epicardial potentials
using a heart-torso model with realistic geometry,” IEEE Trans. Biomed.
Eng., vol. 43, pp. 211–217, Feb. 1996.

[31] L. Frenkel and M. Feder, “Recursive Expectation-Maximization (EM)
Algorithms for Time-varying Parameters with Applications to Multiple
Target Tracking,” IEEE Transactions on Signal Processing, vol. 47, pp.
306–320, Feb. 1999.

[32] R. Sameni, M. B. Shamsollahi, C. Jutten, and G. D. Clifford, “A
Nonlinear Bayesian Filtering Framework for ECG Denoising,” February
2006, submitted to the IEEE Trans. on Biomed. Eng.

[33] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint,
and H. T. Nagle, “A comparison of the noise sensitivity of nine QRS
detection algorithms,” IEEE Trans. Biomed. Eng., vol. 37, no. 1, pp.
85–98, 1990.

[34] G. Moody, W. Muldrow, and R. Mark, “A noise stress test for arrhythmia
detectors,” in Computers in Cardiology, 1984, pp. 381–384.

[35] X. Hu and V. Nenov, “A single-lead ECG enhancement algorithm using
a regularized data-driven filter,” IEEE Trans. Biomed. Eng., vol. 53, pp.
347–351, Feb. 2006.

[36] A. Gelb, Ed., Applied Optimal Estimation. MIT Press, 1974.
[37] M. P. Tarvainen, S. D. Georgiadis, P. O. Ranta-aho, and P. A. Kar-

jalainen, “Time-varying analysis of heart rate variability signals with
a Kalman smoother algorithm,” Physiol. Meas., vol. 27, pp. 225–239,
Mar. 2006.

[38] G. Moody, W. Muldrow, and R. Mark, “The MIT-BIH Noise Stress Test
Database,” http://www.physionet.org/physiobank/database/nstdb/.
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