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Abstract

Modern intensive care units (ICU’s) are equipped with a wide range of patient monitor-
ing devices, each continuously recording signals produced by the human body. Currently,
these signals need to be interpreted by a clinician in order to assess the state of the patient,
to formulate physiological hypotheses, and to determine treatment options. With recent
technological advances, the volume of relevant patient data acquired in a clinical setting
has increased. This increase in sheer volume of data available, and its lack of organiza-
tion, have rendered the clinical decision-making process inefficient. In some areas, such as
hemodynamic monitoring, there is enough quantitative information available to formulate
computational models capable of simulating normal and abnormal human physiology. Com-
putational models can help to synthesize information in one common framework, thereby
improving data integration and organization. Through tuning, such models could be used
to track patient state automatically and to relate properties of the observable data streams
directly to the properties of the underlying cardiovascular system.

In our research efforts, we implemented a pulsatile cardiovascular model and attempted
to match its output to simulated observable hemodynamic signals collected in the ICU, in
order to estimate cardiovascular parameters. Tracking model parameters in time reveals
disease progression, and hence can be very useful for patient monitoring purposes. As the
observable signals are generally not rich enough to allow for the estimation of all the model
parameters, we focused on estimating only a subset of parameters.

Our simulations indicate that observable data at intra-beat timescales can be used to
estimate distending blood volume, peripheral resistance, and end-diastolic right compliance
to reasonable degrees of accuracy. Furthermore, our simulation results based on a real
patient hemorrhage case reveal that clinically significant parameters related to bleeding rate
and peripheral resistance can be tracked reasonably well using observable patient data at
inter-beat timescales.
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Chapter 1

Introduction

1.1 Motivation

Patient care for the critically ill is provided in dedicated hospital departments known as

Intensive Care Units, or ICU s. Patients suffering from various conditions, such as unstable

cardiovascular disease, multiple-organ failure, or severe trauma, are usually admitted to the

ICU. Though the reasons behind admissions are varied, ICU patients have one thing in

common: they are often in a fragile condition which requires close monitoring of the state of

the patient to guide the course of treatment, or to allow for rapid intervention if the patient’s

state deteriorates.

To help accomplish this, modern ICUs are equipped with a wide range of monitoring

equipment, each continuously recording a series of physiological signals. These detailed mea-

surements are supplemented with frequent laboratory tests and imaging studies from different

hospital departments. The logistics involved in data collection from different departments

and the high volume of data, coupled with poor data integration and organization, compli-

cate and prolong the clinician’s task of formulating physiological hypotheses and determining

treatment options. However, timely and accurate patient care is of utmost importance in

an ICU setting where patients require immediate and often proactive intervention. Thus,

the increase in sheer volume of data available and its lack of organization have rendered the
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clinical decision-making process inefficient. Presenting all the available information without

regard to relevance can often lead to oversight of important factors which can cause serious,

possibly fatal, errors in an ICU setting. This phenomenon is generally known as the problem

of information overload which has contributed to several historical catastrophes including

the New York City blackout of 1977 [8].

In addition to the information overload problem, ICUs suffer from inaccurate alarm

systems. Bedside alarms sound an alert whenever an individual measured signal exceeds or

drops below some predefined values, an event that occurs quite often with no physiological

basis, as for example, when excessive patient movement interferes with electrode contacts

and position. Individual signals being monitored are usually correlated and interdependent.

However, current representation of these signals does not incorporate these relationships,

which results in too sensitive an alarm system. In fact, several studies have shown that over

80% of these single-variable alarms are false positives [9], leading to misallocated resources

and desensitization to alarms.

The inability of the ICU monitoring systems to evaluate the state of the patient efficiently

increases the chances of human error. Donchin et al. [10] conducted a study in which they

estimated that 1.7 human errors occur per patient per day in the ICU they observed. One of

the reasons for the errors was attributed to difficulties in assessing patient state, a function

which is directly affected by the limitations of the current monitoring systems coupled with

the information overload problem.

The problems encountered in ICU patient monitoring motivate the use of computational

models. Representing a physiological system in a mathematical form aids in understanding

how the various components interact with each other to influence the outputs. Computa-

tional models tend to synthesize information in one common holistic framework, thereby

improving data integration and organization. Given current computational power, compu-

tational models can cycle through many iterations of hypothesis-generation and test their

compatibility with experimental data in real time. Furthermore, computers tend to be more

vigilant than humans. Thus, computational models might be able to learn from clinical data
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and help significantly in developing physiological hypotheses regarding a patient’s state.

The cardiovascular system has been subjected to various modeling studies (see Section

1.3). There is enough knowledge about the cardiovascular system to formulate mathematical

models that describe the major inter-component relationships quite accurately. Such models

may be useful in helping to assess patient state, and if so, they can be employed to aid in

patient monitoring.

1.2 The Cardiovascular System

The human cardiovascular system is responsible for circulating blood throughout the body to

perfuse the tissues with nutrients and oxygen, and remove the waste products. The system

includes the heart, which acts as a pump, and the blood vessels through which the blood

flows (see Figure 1-1).

There are three main kinds of blood vessels: arteries, veins and capillaries. The arteries

carry blood from the heart to the tissues at high pressures. As blood is transported to the

rest of the body, arteries branch out into smaller vessels through which blood is transported

to individual organs. Within the organs, the exchange of oxygen and nutrients takes place

through the walls of thin vessels known as capillaries. The veins, which constitute the low-

pressure carrying component of the system, transport blood back to the heart.

The heart consists of four chambers - two atria (left and right), each of which is connected

to a ventricle. The pumping action of the heart is quasi-periodic in nature, the rhythm of

which is governed by electrical impulses generated by the sino-atrial node. A cardiac cycle

consists of two regimes of operation: diastole and systole. During the period of diastole, the

ventricles are relaxed and fill with blood, whereas in systole, the ventricles contract and eject

blood into the circulation. The left ventricle pumps oxygenated blood to the rest of the body

(systemic circulation). After the exchange of nutrients and oxygen, de-oxygenated blood is

returned to the right atrium and then the ventricle, which then pumps the blood through

the lungs (pulmonary circulation) where gaseous exchange occurs. The newly oxygenated

blood is then driven into the left atrium and then ventricle, from where the cycle continues.
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Figure 1-1: The Circulation System [1].

As the cardiovascular system maintains blood flow, a model that accurately represents

this system can be used to gain insight into the hemodynamic changes occurring in patients.

1.3 Cardiovascular Models and Model-Based Reason-

ing

An analogy exists between computational models of cardiovascular function and electrical

circuits, a parallel that has been exploited since the late 1800’s. Moens and Korteweg used

transmission-line theory to describe quantitatively the circulation system in 1878. Around

twenty years later, Frank introduced the Windkessel model, which consisted of a simple

first-order circuit to model arterial dynamics [11]. With the advent and widespread use

of digital computing, a wealth of research has been directed towards the development of

computational cardiovascular models that adequately represent the underlying physiology

and hemodynamics. The models vary in degree of complexity, with the ’Guyton Model ’,
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consisting of the combined physiological insight of Dr. Guyton and his associates, being the

most comprehensive [12].

The purpose behind model development is to gain insight into physiological phenomena

within a closed framework. Much of the mentioned modeling work has been directed towards

forward-modeling, which consists of constructing computational models capable of produc-

ing realistic data. Recently, however, interest has been generated in inverse-modeling, or

parameter estimation, where the model parameters are estimated on the basis of observed

data. Various techniques, including gradient-based error minimization using underlying com-

putational models, have been used to estimate cardiac function [13] and arterial parameters

[13, 14, 15].

Cardiovascular parameter estimation can provide an integrated framework that can be

used to asses the patient’s hemodynamic state. Knowledge of the changes in specific parame-

ter values can help monitor patient trajectory and guide clinical interventions. Motivated by

the advantages of model-based estimation and reasoning, Zhao developed a set of heuristic al-

gorithms to estimate 7 of the 17 independent parameters in an underlying lumped-parameter,

6-compartment, cardiovascular model [16]. The system evaluated the parameters by itera-

tively matching the model output to pseudo-patient data. This was achieved by tweaking

the model parameters based on some underlying logic using artificial intelligence. The al-

gorithms were tested on steady-state simulated data and were found to perform reasonably.

However, such a system cannot be used for continuous monitoring, as the algorithms use

certain measurements that are only intermittently available, for example, left ventricular

end-diastolic pressure (LVEDP). Moreover, the steady-state assumption is not always valid

in unstable patients. In order to help monitor patients continuously, the estimation algo-

rithm has to be devoid of the steady-state assumption and it has to be limited to using what

is constantly measurable in an ICU.

1.4 Hemodynamic Monitoring in an ICU

Modern day ICUs have the capability to routinely record the following hemodynamic data:
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• Electrocardiograph (ECG): ECG is a recording of the body surface potentials generated

by the electrical activity of the heart. ECG recordings are important indicators of

the state of the heart and are extensively used for diagnosis of cardiac conduction

abnormalities (arrhythmias), ischemia, infarction, hypertrophy, etc. Moreover, ECG

monitors will record heart rate (HR) and rhythm, which are important factors in

judging the stability of all patients.

• Systemic Arterial Blood Pressure (ABP): ABP is monitored invasively using an arterial

line inserted into an accessible artery. The preferred site of insertion is the radial

artery on the wrist as it is easily accessible and simple to keep clean. Continuous

ABP monitoring is essential as abnormal ABP is indicative of diseased states. In

addition, continuous ABP monitoring serves as a feedback to clinical interventions

such as medication. The monitoring system records ABP waveforms and also computes

derivable quantities such as systolic, diastolic, and mean pressures.

• Central Venous Pressure (CVP): CVP waveforms are monitored by inserting a venous

catheter into a peripheral vein and by advancing the catheter through the subclavian

vein and the superior vena cava. CVP is an important determinant of right ventricular

function as it correlates with the filling pressure of the right heart.

• Pulmonary Artery Pressure (PAP): The introduction of PAP monitoring has been one

of the most popular and important advances in patient monitoring [17]. Although

recently PAP recordings have become subjected to increased scrutiny, it is not uncom-

mon to have patients inserted with a Swan-Ganz catheter to record PAP waveforms.

The catheter is inserted into a peripheral vein, and it is pushed past the right atrium

and ventricle until it enters the pulmonary artery. The tip of the catheter is fitted with

a balloon, which, when inflated, obstructs flow and gives a measure of left ventricular

filling pressure.

• Cardiac output (CO) is an important hemodynamic parameter which can be measured

intermittently in an ICU. CO is a measure of the blood volume pumped by the heart
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per minute and hence it is an important indicator of cardiac function. CO is usually

measured by the thermodilution technique, in which a patient is administered a bolus

of cold liquid. The ensuing temperature changes, measured by a thermistor attached

to a catheter, are then plotted over time, forming what is known as the thermodilution

curve. A measure of CO is obtained by exploiting its inverse relationship to the area

under the thermodilution curve.

1.5 Thesis Goals and Outline

In this thesis, we explore model-based quantitative methods for estimating selected cardio-

vascular parameters over time. Tracking the time evolution of these parameters will not

only aid in determining patient state, but it may also help in identifying the onset of com-

plications, thereby increasing the quality and effectiveness of patient care. The data used

for estimation is limited to what can be monitored continuously in an ICU. This includes

waveforms and other derivable quantities of ECG, ABP, CVP, and PAP. The challenge lies

in using a small number of observable signals to perform parameter estimation based on

an underlying high-detail model. To overcome this difficulty, we focus on estimating only a

subset of parameters.

In Chapters 2 and 3, we detail the computational cardiovascular model used for our

investigation and we describe its implementation in Simulink.

In Chapter 4, we use synthetic waveform data to estimate cardiovascular parameters using

a nonlinear least squares optimization technique along with subset selection - an algorithm

that identifies a subset of parameters that can be estimated robustly.

In Chapter 5, we explore a real hemorrhage case. We attempt to track the bleeding rate

and the rate of change of peripheral resistance using beat-to-beat averaged data. Accurate

knowledge of the values of these two parameters is critical in treating any hemorrhage case.

In Chapter 6, we provide concluding remarks and directions for future research efforts.
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Chapter 2

The Computational Hemodynamic

Model

A strong analogy exists between electric circuits and fluid systems. Computational models of

the cardiovascular system are therefore conveniently represented in the form of their circuit

analogs. The vessels can be thought of as capacitors with compliances (C, mL
mmHg

) that store

blood volume (Q, mL), connected to resistors (R, mmHg·s

mL
or PRU) which account for the fluid

resistance faced by blood flow. The ventricles can be modeled as capacitors with time varying

compliances. During diastole, ventricular compliance is high, which allows the ventricles

to store blood volume, thus mimicking the act of being filled. During systole, however,

ventricular compliance decreases, thus increasing pressure, which leads to the emptying of

the chamber. A periodic compliance function that varies between the diastolic and systolic

compliance values can therefore be used to model the pumping action of the heart. Using

this circuit analogy, blood volume maps to charge, blood flow rate (q̇, mL/s) to current, and

pressure (P , mmHg) to voltage. In this chapter, we describe the cardiovascular model used

and we detail its implementation. The various control loops that regulate the system are

described in the next chapter.
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2.1 Simplifying Assumptions

It would be practically impossible to construct a model with a manageable level of complexity

that accounts for all the nuances of cardiovascular function. A great simplifying assumption

in this regard is that the cardiovascular system can be represented by a lumped-parameter

model. Dispersed networks, such as that of the arteries and arterioles, are thereby modeled

using single circuit elements. Lumping the parameters together reduces the ability of the

model to represent distributed behavior, such as pulse reflections; however, such detail is

currently not the focus of our investigation.

Another simplifying assumption is that most of the circuit elements (apart from the

diodes that represent valves) are linear. For the capacitors, this assumption is reasonable

over the range of pressures for which the elastic fibers of the vessels are stressed, leading to an

approximately linear volume-pressure relationship. Beyond this range, collagen fibers become

stressed and add an element of nonlinearity. The systemic arteries, however, exhibit nonlinear

compliance over all pressure ranges due to the presence of multiple tensions. Moreover, the

pulmonary arterial resistance is notably nonlinear in behavior as well [18]. However, for

the sake of simplicity, these elements can be considered as linear without compromising

appreciably the ability of the model to represent the cardiovascular system for the purposes

of our investigation.

2.2 CVSIM

The Cardiovascular Simulator, or CVSIM, was originally developed by Davis as an aid in

teaching cardiovascular physiology [4]. Figure 2-1 shows the model in its circuit represen-

tation. CVSIM comprises six compartments which model the left and right ventricles (l, r),

the systemic arteries and veins (a, v), and the pulmonary arteries and veins (pa, pv). The

atria are excluded from the model because they play no significant hemodynamic role at

normal heart rates. During increased heart rates, as may be the case in disease conditions,

atrial contraction may contribute significantly to stroke volume. However, the effects of the
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Figure 2-1: Circuit analog of the CVSIM model.

atria can be approximately accounted for by modifying the right ventricular parameters [4].

The ventricles are modeled by time-varying compliances connected to inflow and outflow

resistances (R(l,r)i, R(l,r)o) that represent the resistance encountered by blood flow as it enters

and exits the ventricles. The time-varying compliance is completely characterized in our

idealized model by the beat period (T ), and by its minimum (end-systolic (es)) and maximum

(end-diastolic (ed)) values (see Section 2.3.3). The rest of the compartments are each modeled

by a linear capacitor coupled with a linear resistor. The resistances for the systemic and

pulmonary veins are lumped with the right and left ventricular inflow resistances respectively.

Each capacitor acts as a storage for blood volume, as determined by the characteristic

relationship:

Qi = Ci · (Pi − P ref
i ) (2.1)
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where the subscript i refers to any of the six compartments. Qi is referred to as the stressed

compartment volume. To represent the volume of the compartment at zero-pressure, each

compartment has another volume parameter, Q0
i , associated with it. The reference pressure,

P ref
i , is atmospheric for the systemic circulation, and intrathoracic pressure (Pth) for the rest

of the compartments as they reside inside the thorax. Although Pth is known to vary with

respiration, it can be modeled reasonably well as a constant equal to its average value. The

diodes constitute the only nonlinear elements of the model and act as cardiac valves that

ensure uni-directional blood flow through the ventricles.

We chose to use the CVSIM model because of its reasonable level of complexity and its

remarkable ability to model normal cardiovascular dynamics. Moreover, it was also previ-

ously used successfully to model some steady-state disease conditions, thus demonstrating

its ability to model abnormal conditions as well [4, 16].

2.3 The Model Implementation

2.3.1 The Platform

We developed the model in Simulink1, which is a strong tool for simulating dynamic systems.

Simulink allows for a good degree of abstraction by providing building blocks with built-in

functions and routines. The model becomes easily extendible, which is advantageous for

simulating various disease conditions. Another advantage of this platform is the fact that it

is automatically interfaced with Matlab, which makes the analysis and presentation of data

very convenient.

2.3.2 Nominal Parameter Values

The nominal parameter values were determined by Davis for a 70-kg individual [4]. We use

his values, which are summarized in Table 2.1.

1Version 5.0 (R13) dated 20-Jun-2002
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Table 2.1: Nominal parameter values for the CVSIM model [4].

Compartment C, mL
mmHg

Qo,mL R, mmHg−s

mL
(PRU)

left ventricle (l) 0.4 − 10 15 0.006 (Rlo - left ventricular outflow resistance)
systemic arteries (a) 1.6 715 1.0
systemic veins (v) 100.0 2500 0.01 (Rri - right ventricular inflow resistance)
right ventricle (r) 1.2 − 10 15 0.003 (Rro - right ventricular outflow resistance)
pulmonary arteries (pa) 4.3 90 0.08
pulmonary veins (pv) 8.4 490 0.01 (Rli - left ventricular inflow resistance)

System parameters: T = 5
6

s
Pth = −4 mmHg
Qtotal = 5000 mL

2.3.3 The Time-Varying Compliance Function

The compliances of the ventricles are based on the ventricular model of Suga and Sagawa

[19, 20]. The idealized time evolution of the compliance function is given below, as outlined

by Mukkamala [18], in the form of its inverse, called elastance (E).

El,r(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2
( 1

Ces
l,r

− 1
Ced

l,r

) · (1 − cos(π(t−ti)
Ts

)) + 1
Ced

l,r

ti ≤ t < ti + Ts

1
2
( 1

Ces
l,r

− 1
Ced

l,r

) · (1 + cos(2π(t−(ti+Ts))
Ts

)) + 1
Ced

l,r

ti + Ts ≤ t < ti + Ts + Tir

1
Ced

l,r

ti + Ts + Tir ≤ t < ti+1

(2.2)

where the subscript i refers to the ith cardiac cycle. Ts and Tir refer to the systolic time

period and the time for isovolumetric relaxation, respectively. These two parameters are

related in the following manner:

Ts = 0.3
√

T (2.3)

Tir =
Ts

2
=

0.3
√

T

2
(2.4)

The time period for diastole, Td, can therefore be calculated as follows:

Td = T − Ts − Tir = T − 0.45
√

T (2.5)
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Figure 2-2: Ventricular compliance function and its derivative.

Figure 2-2a shows the compliance function over one cardiac cycle.

2.3.4 The Model Dynamics

Applying Kirchhoff’s Current Law (KCL) to the circuit topology of the model, the following

set of equations is obtained:

dPl

dt
=

q̇li − q̇lo − (Pl − Pth) · dCl(t)/dt

Cl(t)
(2.6)

dPa

dt
=

q̇lo − q̇a

Ca

(2.7)

dPv

dt
=

q̇a − q̇ri

Cv

(2.8)

dPr

dt
=

q̇ri − q̇ro − (Pr − Pth) · dCr(t)/dt

Cr(t)
(2.9)

dPpa

dt
=

q̇ro − q̇pa

Cpa

(2.10)

dPpv

dt
=

q̇pa − q̇li

Cpv

(2.11)
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The compartmental flow rates are obtained from the defining equation for resistors:

q̇li =

⎧⎪⎨
⎪⎩

Ppv−Pl

Rli
if Ppv > Pl

0 otherwise

(2.12)

q̇lo =

⎧⎪⎨
⎪⎩

Pl−Pa

Rlo
if Pl > Pa

0 otherwise

(2.13)

q̇a =
Pa − Pv

Ra

(2.14)

q̇ri =

⎧⎪⎨
⎪⎩

Pv−Pr

Rri
if Pv > Pr

0 otherwise

(2.15)

q̇ro =

⎧⎪⎨
⎪⎩

Pr−Ppa

Rro
if Pr > Ppa

0 otherwise

(2.16)

q̇pa =
Ppa − Ppv

Rpv

(2.17)

Equations 2.6 - 2.11 give the time derivatives of the compartmental pressures, which act as

state variables. The system of equations can be solved by discretizing the problem. Given

an initial set of pressures, the corresponding flow rates are calculated and used to determine

the local gradient information for the pressures. The pressure gradients are then integrated

over time to obtain the compartmental pressures at the next time step. Once the new set

of pressures is obtained, the cycle continues and the system is evolved iteratively in time.

The integration routine used is the standard, fourth-order Runge-Kutta method with a fixed

step-size of 0.005s [21]. The fixed step-size is on the order of the smallest time-constant of

the system and it is smaller than 0.006s, which was identified as the maximum allowable

step-size by Davis [4]. The details of the model implementation outlined here, including the

choice of state variables, are similar to previous realizations of CVSIM [4, 18].
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2.3.5 Initial Conditions

The initial conditions for the state variables are obtained by employing the method used

by Davis [4]. A set of linear equations, formulated on the basis of conservation of volume

(charge), are solved to obtain the end-diastolic pressures, which are then used as initial

conditions for the start of a cardiac cycle:

Ced
l (P ed

l − Pth) − Ces
l (P es

l − Pth) = Ced
r (P ed

r − Pth) − Ces
r (P es

r − Pth) (2.18)

= Ts

P es
l − Pa

Rlo

(2.19)

= T
Pa − Pv

Ra

(2.20)

= Td

Pv − P ed
r

Rri

(2.21)

= Ts

P es
r − Ppa

Rro

(2.22)

= T
Ppa − Ppv

Rpa

(2.23)

= Td

Ppv − P ed
l

Rli

(2.24)

Qtotal − Qo
total = Ced

l (P ed
l − Pth) + CaPa (2.25)

+CvPv + Ced
r (P ed

r − Pth)

+Cpa(Ppa − Pth) + Cpv(Ppv − Pth)

Equations 2.18 - 2.25 are independent and can be solved to obtain the six initial compart-

mental pressures. Equation 2.18 equates the left and right ventricular stroke volume (volume

of blood pumped out by the left and right ventricles during one cycle). Equations 2.19 -

2.24 equate the stroke volume to the average volume of blood that passes through each of

the remaining compartments. Equation 2.25 applies the conservation of volume (charge)

condition to equate the total distending blood volume to the sum of the stressed volumes of

each compartment.
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2.3.6 Conservation of Volume

The CVSIM model described is a closed system with no external sources or sinks of charge:

the amount of charge in the model is completely defined by the initial conditions and must

remain constant throughout the simulation. However, when the model was implemented

with the state variables as described by Equations 2.6 - 2.11, volume conservation was not

observed (see Figure 2-3).

The cause of deviations in volume was traced to numerical errors associated with the

time-varying derivative terms dCl(t)
dt

, dCr(t)
dt

, (see Equations 2.6 and 2.9). Figure 2-2b shows

a plot of the derivatives of the compliance functions for one cardiac cycle. The derivatives

are not well behaved in that they vary dramatically over short periods of time when tran-

sitions occur from systole to isovolumetric contraction, and from isovolumetric contraction

to diastole. The abrupt changes in the ventricular compliance derivatives lead to numerical

integration errors when computing ventricular pressures. Moreover, the magnitudes of the

ventricular compliance derivatives are relatively large, which further magnifies the numerical

errors. A simple fix to this problem is a change of ventricular state variables to volume, in-

stead of pressure, which removes the dependency on the ventricular compliance derivatives.

Equations 2.26 - 2.27 represent the revised state equations for the ventricles:

dQl

dt
= q̇li − q̇lo (2.26)

dQr

dt
= q̇ri − q̇ro (2.27)

Figure 2-4 shows a time-series plot of the deviation in expected and calculated total blood

volume after the change of ventricular state variables. Barring insignificant numerical errors,

the change of state variables leads to volume conservation.
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Table 2.2: Comparison between model outputs and reported norms for compartmental pres-
sures, stroke volume and cardiac output [5, 6].

Variable Reported norm Simulation
Pressures (mmHg)

Pl

Systolic 125 113
Diastolic 8 8

Pa

Systolic 120 112
Diastolic 80 80

Pv (average) 4 7
Pr

Systolic 25 23
Diastolic 4 6

Ppa

Systolic 25 22
Diastolic 10 11

Ppv (average) 7 9
Volume (mL)

Stroke volume 77 74
Cardiac output ( L

min
) 5.0 5.3

2.3.7 Model Validation

The ability of the CVSIM model to reasonably represent the underlying physiology can be

gauged from a comparison of the model outputs, at different time scales, to what is generally

observed in humans.

Beat-to-Beat comparisons

Table 2.2 shows a comparison of steady-state cardiac output, and beat-to-beat pressure

values and stroke volume. The norms listed are for a 70-kg adult as reported by Milnor in

Mountcastle’s Physiology [5, 6].

Pulsatile Waveforms

The validation of the intra-beat dynamics is made by plotting the pressure waveforms for

all the compartments. Figure 2-5 shows the plots for all the compartmental pressures for a
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Figure 2-5: Pulsatile pressure waveforms for a single beat.

single beat. On the whole, the pressure waveforms look similar to the actual data obtained

by catheterization. The pressure magnitudes and time-constants involved seem reasonable,

thus validating the choice of parameter values used. However, expected differences, such

as the absence of reflected waves due to the neglect of distributed (traveling wave) effects,

caused by the lumping of parameters, are visible.

2.3.8 Interstitial Fluid Compartment

Body fluid is divided into two distinct categories: intracellular and extracellular fluid. As

the name suggests, intracellular fluid consists of the volume within the cells, which forms

approximately 2
3

of the total body fluid. Extracellular fluid is further divided into interstitial

fluid and blood plasma. The division is such that in steady state, around 11
14

of the extra-

cellular volume resides in the interstitial space, whereas the rest is blood plasma [2]. Figure
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Figure 2-6: Volume distribution for an average 70-kg adult. Approximately 60% of body
mass is fluid. This percentage can vary depending on age, sex, and obesity [2].

2-6 shows the distribution of fluid volume for an average 70-kg adult.

The fluid in plasma constantly interacts with the interstitial space through the capillary

pores; however, the CVSIM model does not represent this communication. In steady-state,

the absence of the interstitial compartment does not significantly inhibit the ability of the

model to represent the underlying physiology, as no net exchange of volume takes place

between the two compartments. However, during disease conditions, such as hemorrhage,

or during clinical interventions, such as administration of fluid boluses, the role of the in-

terstitial compartment becomes significant. In this section, we describe the addition of the

interstitial fluid compartment (int), and we detail the derivation of the nominal parameter

values associated with the compartment2.

2Note: The interstitial compartment is used only in Chapter 5, when matching simulated data to actual
patient data.
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Model Addition

The interstitial fluid compartment is represented by an additional resistor and capacitor

(Rint, Cint), connected between the systemic arteries and veins (see Figure 2-7). The ca-

pacitor models the volume storage ability of the interstitial fluid space, whereas the resistor

models the resistance faced by the fluid when diffusing between the two compartments.

The nominal value for Cint can be determined using the following logic, which analyzes

the fluid dynamics before and after the administration of a fluid bolus3 (saline, for example):

• In steady-state, Pv = Pint, as no net exchange of volume takes place. Consider an

initial (i) steady-state where P i
int = P i

v = P .

• After intra-venous administration of a fluid bolus ΔV , a new steady-state will be

reached where 11
14

of the bolus volume will diffuse into the interstitial space, whereas

3
14

will remain in the circulatory system. The veins form the largest blood reservoirs

of the circulatory system, storing 64% of the volume [2], so 64% of the fraction of the

bolus volume remaining in the intra-vascular space will reside in the veins once the

new steady-state has been reached. Since compartmental pressure can be expressed as

a ratio of volume to compliance (see Equation 2.1), the following set of equations is

obtained when equating the final (f) steady-state pressures P f
int and P f

v :

P f
int = P f

v

P +
11

14
· ΔV · 1

Cint

= P +
3

14
· ΔV · 64% · 1

Cv

Cint =
11

14
· 14

3
· 100

64
· Cv

Using the nominal value Cv = 100 mL
mmHg

, Cint ≈ 573 mL
mmHg

.

We use the the same analysis, which considers the dynamics after the administration of

a fluid bolus, to determine the value of Rint. The nominal Rint value can be resolved using

3We assume the administration of isotonic fluids which redistribute between the intravascular and inter-
stitial spaces only [22].
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Figure 2-7: Addition of the interstitial compartment between the systemic arteries and veins.

the time-constant involved in the transfer of fluid volume between the interstitial space and

the circulatory system. Based on an extensive literature review, Heldt determined that the

time-constant for diffusion to and from the interstitial space is the same, with a nominal

value τint = (4.6 ± 0.4) min [7].

In the circuit representation of the model, the topology is such that the venous charge

decay (post-administration of a fluid bolus) does not follow a simple RC time-constant.

Therefore, it is not trivial to determine an analytical formula for the effective time-constant

which can be used to pinpoint the best Rint value. To overcome this problem, we assume

that on a beat-to-beat averaged basis during the transient, the charge flowing in from the

arterial side (Qav
incoming) is offset by the charge flowing into the right ventricle (Qav

outgoing, see

Figure 2-7). With this assumption, the added venous charge redistributes itself between

Cv and Cint, which are connected in series through Rint. This configuration leads to the

following approximate value for Rint:

τint = 276s

Rint · CvCint

Cv + Cint

= 276s

Rint ≈ 3.2PRU

Next, we carried out several simulations of fluid bolus administration in which Rint was
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Figure 2-8: Beat-to-beat averaged venous charge (Qav
v ) vs time. Sub-figure (a) shows the

plot of Qav
v vs time before and after the administration of a fluid bolus. Sub-figure (b) shows

the plot of ln(Qav
v ) vs time, and its best straight line fit, after the administration of a fluid

bolus. The time-constant for the charge decay is the reciprocal of the slope of the best
straight line fit: τint ≈ 4.5 min.

varied around its approximate value of 3.2 PRU. Based on simulation results, Rint = 2.3

PRU yielded a venous charge decay time-constant of approximately 4.5 mins. Hence, a

nominal value of 2.3 PRU was assigned to Rint. Figure 2-8 shows the plot of simulated

venous volume vs time, which captures the dynamics induced by a fluid bolus administration.

Figure 2-9 shows a plot of the difference between Qav
incoming and Qav

outgoing. We observe that

this difference is indeed small compared to the venous charge decay. Thus, the assumption

we made in approximating a value for Rint is verified to be reasonable.

The addition of the interstitial fluid compartment adds another state variable to the

model. See Appendix A for the details of the new model equations.

2.3.9 Concluding Remarks

Though the CVSIM model does not capture the fine details of cardiovascular function, it

is a reasonable model to start investigating the use of parameter estimation as an aid in
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patient monitoring. Since the overall behavior of the model is similar to the underlying

physiology, there is credibility in the use of the system. However, various additions to the

model have been proposed, including the use of inductors to model the inertial effects of blood

[13]. Moreover, the systemic circulation has also been modeled as a distributed set of parallel

compartments, as opposed to a single compartment, in order to include the individual effects

of prominent arteries and veins [7]. Nevertheless, there is a clear trade-off between model

complexity and ability to represent minute details. The CVSIM model strikes a balance

by providing a system that is of manageable complexity, and reasonable in its ability to

represent the cardiovascular system.
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Chapter 3

The Cardiovascular Control System

The cardiovascular system forms the lifeline for cell survival as it transports oxygen and

nutrients. The system maintains its critical homeostasis by adapting dynamically to meet

the current needs of the body and to counteract hemodynamic perturbations. For example,

in the absence of a control system, the commonplace act of regaining the head-up posture

from a supine state causes the blood pressure at the level of the heart to drop to such a

degree that one might faint. In the presence of cardiovascular control, however, changes in

posture are activities that we perform seemingly effortlessly without even noticing the stress

that we impose upon the cardiovascular system.

In order to accomplish its task, the cardiovascular system exerts control at both local

and global levels. Local control includes the modulation of vascular resistance by tissue

beds to maintain adequate blood flow in a specific region. Global control, on the other

hand, involves the regulation of hemodynamic variables to maintain overall pressure. The

reflex mechanisms involved in control span many time scales, from the fast neurally-mediated

(seconds to minutes) actions to the slower hormonally-mediated effects (hours and even days)

[2].

In order to faithfully track patient state continuously, we are interested in modeling the

short-term cardiovascular control to clinical interventions and to changes in the degree of a

disease condition. In this chapter, we describe the arterial baroreflex, which is a principal
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component of short-term neurally-mediated control, and we outline its implementation in

our simulator1. Furthermore, we qualitatively validate the baroreflex function by simulating

certain disease conditions.

3.1 Arterial Baroreflex

Our representation of the arterial baroreflex is based on Davis’s extension of deBoer’s work

[4, 23], with certain changes in implementation that are described in the next section.

The arterial baroreflex is a negative feedback system that aims to maintain ABP around

a particular set-point. The afferent leg of the system includes pressure sensors, known as

baroreceptors, located in the aortic arch and the carotid sinuses. These receptors sense

ABP and transmit this information via afferent fibers to the brain, where the deviation in

ABP from the set-point is mapped to sympathetic (α and β) and parasympathetic activity.

Increased α-sympathetic action leads to increased peripheral resistance and decreased zero-

pressure venous volume, while increased β-sympathetic action causes an increase in cardiac

contractility and heart rate. Parasympathetic action affects the heart rate in a manner

opposite to β-sympathetic action; an increase in parasympathetic activity reduces the heart

rate instead of increasing it. Figure 3-1 presents a block diagram of the arterial baroreflex

system.

3.2 Implementation

Previous implementations of the baroreflex mechanism adopted relatively coarse time-steps

for the control system as compared to the rest of the cardiovascular model [4, 18]. It was

deemed computationally inefficient for the reflex system to react to every sample of ABP, as

pulsatile ABP is bandlimited to frequencies below ten times the mean heart rate, while the

frequency response of the cardiovascular regulatory mechanism is bandlimited to frequencies

1Several other short-term control mechanisms exist, including the cardiopulmonary reflex. However, as
we are primarily interested in responses to hypotensive stimuli (see Section 4.1.5), the arterial baroreflex
response is likely to dominate.
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Figure 3-1: Block diagram of the arterial baroreflex system. P sp
a is the set-point pressure

that the system is aiming to maintain.

less than the mean heart rate [18]. Thus, in Davis’s model of the baroreflex, pulsatile ABP

was averaged over 0.5 s and then sampled at 0.5 s [4]. This implementation, however, leads

to aliasing, as the frequency content above 1 Hz is not sufficiently filtered by the 0.5 s running

average filter. A subsequent implementation by Mukammala [18] averaged the pulsatile ABP

over 0.25 s and then sampled it at 0.0625 s, thus reducing the aliasing effects. In order to

more completely remove the effects of aliasing, we decided to implement the control system

in continuous-time.

3.2.1 Preprocessing and Error Calculation

Since the cardiovascular regulatory mechanism responds to low-frequency fluctuations of

ABP from a set-point, the pulsatile ABP signal is first low-pass filtered to remove the strong

frequency content at, and above, the mean heart rate2. Next, the low-pass filtered ABP signal

2In principle, the low-pass filter should not be required as the physiological control system response itself
is bandlimited to frequencies below the mean heart rate. However, as shown in Section 3.2.2, the response
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Figure 3-2: Block diagram depicting the preprocessing involved.

P lp
a (t) is subtracted from the set-point to produce the error signal e(t), which then is passed

on to a nonlinear mapping block that represents the baroreflex saturation characteristic [24].

As the autonomic nervous system exhibits a limiting behavior in its action, the following

mapping is applied to e(t) [23]:

esat(t) = 18 arctan(
e(t)

18
) (3.1)

This mapping restricts the input to the effector mechanism to approximately ±28 mmHg.

Figure 3-2 illustrates the preprocessing mechanism.

3.2.2 Effector Mechanism

Control Filters

The effector mechanisms are modeled as a linear combination of two LTI filters which rep-

resent the sympathetic (α and β) and the parasympathetic limbs of the autonomic nervous

system. The filters are defined by their unit-area impulse responses, s(t) (sympathetic)

and p(t) (parasympathetic). Figure 3-3 illustrates s(t) and p(t) along with their Fourier

transforms.

The filters were implemented using Simulink’s continuous-time blockset, which allows for

the representation of rational transfer functions and continuous-time delays. The transfer

of the estimated control system does not sufficiently attenuate the strong, high-frequency content present in
the ABP waveform.
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Figure 3-3: Impulse response and magnitude of Fourier transform of sympathetic and
parasympathetic filters. The impulse responses are estimated from canine data [3].

functions for the control filters are given as follows:

S(s) =
1

350s2
e−30s − 2

75s2
e−5s +

1

42s2
e−2s (3.2)

P (s) =
−200

3s2
e

−7s
10 +

50

s2
e

−6s
10 +

50

3s2
e−s (3.3)

Autonomic Mediation

Autonomic mediation is executed by convolving esat(t) with a linear combination of s(t) and

p(t) to obtain ΔX(t), which is the control system contribution to each effector variable X(t)
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Figure 3-4: Diagrammatic representation of the effector mechanism depicting autonomic
mediation.

(see Figure 3-4). Gs
X and Gp

X represent the scalings of the unit area impulse responses s(t)

and p(t) respectively, where X denotes the effector variable (see Table 3.1 for a summary

of the control system parameters). The output of the control filters is then added to the

nominal value of the effector variable, X0, in order to yield the value of the variable at the

current time-step.

The effector limbs corresponding to heart rate, zero-pressure venous volume, and periph-

eral resistance are all updated every simulation time step. Ventricular contractility, on the

other hand, is updated every beat, since the contractility variables are used to define the

compliance function (see Section 2.3.3), and hence must remain constant for the entire beat.

The onset time for the start of a cardiac-cycle, which begins with ventricular contraction,

is determined through an Integral Pulse Frequency Modulation (IPFM) model. The IPFM

model integrates heart rate over time until the integral reaches a threshold, after which ven-

tricular contraction starts. The integral is then reset to zero and the process repeats itself

(see Heldt [7] for a more detailed description of the IPFM model).

Stability Issues

When the control system was implemented using Simulink’s continuous-time blockset, the

parasympathetic implementation turned out to be unstable. Figure 3-5 shows the open-loop

step responses of the implemented filters.

In order to obtain a stable implementation of the parasympathetic filter, Padé approx-

imations were used to convert continuous-time delays to rational transfer functions. The
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Table 3.1: Nominal parameter values for the arterial baroreflex model. The values are taken
from Davis’s implementation [4].

Reflex limb Gs Gp

RR-interval ms
mmHg

9 9

Left ventricular contractility mL
mmHg2 0.007 0

Right ventricular contractility mL
mmHg2 0.021 0

Peripheral resistance PRU
mmHg

-0.011 0

Zero-pressure venous volume mL
mmHg

26.5 0

P sp
a = 94 mmHg

first-order Padé approximation is given as follows:

esx ≈ 1 − sx/2

1 + sx/2
(3.4)

Using this approximation, the parasympathetic transfer function can be approximated as

follows:

P (s) =
−200

3s2
e

−7s
10 +

50

s2
e

−6s
10 +

50

3s2
e−s (3.5)

≈ −200

3s2
· 1 + 7s/20

1 − 7s/20
+

50

s2
· 1 + 6s/20

1 − 6s/20
+

50

3s2
· 1 + s/2

1 − s/2

≈ 1

0.0525s3 + 0.43s2 + 1.15s + 1

Figure 3-6a shows the desired parasympathetic impulse response overlaid on the one ob-

tained with the first-order Padé approximation. We observe that while the approximation

captures the peak action time, it fails to accurately model the magnitude, initial delay, and

the end-response time. In order to correct some of these inadequacies, the response was

localized in time by expanding in frequency to obtain what is labeled as the ‘tweaked’ re-

sponse. However, only minor improvements were observed. Clearly, the first-order Padé
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Figure 3-5: Open-loop step responses of sympathetic and parasympathetic filters as imple-
mented using Simulink.

approximation is not sufficient. Therefore, higher-order approximations were used to model

better the parasympathetic response. Figure 3-6b shows the impulse response obtained with

the fifth-order Padé approximation. This higher-order approximation maintains the integrity

of the magnitude and response times, and thus is better able to model the desired response.

Figure 3-7 shows a comparison of the open-loop step response of the desired parasympathetic

filter, and its first- and fifth-order Padé approximations. The fifth-order Padé approximation

is seen to be a viable one as it closely follows the desired response.

Parasympathetic Response Simplification

Since the parasympathetic impulse response lasts for only a fraction of a heart beat, we tried

replacing it with two simplifying approximations: a simple gain, and a pure delay followed

by a gain. The closed-loop performances using the simplifications and the fifth-order Padé

approximation were compared for two simulated disease conditions: hemorrhage, and left MI

(see Section 3.3). Figure 3-8 shows the closed-loop output of the parasympathetic block when

using different approximations for the filter. We observe that there is no visible difference

amongst the block outputs, indicating that the parasympathetic filter can be represented by
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Figure 3-6: Nominal parasympathetic impulse response and its Padé approximations.

a simple gain for closed-loop studies.

3.3 Qualitative Validation

The control system was validated qualitatively by observing its response to certain disease

conditions.

3.3.1 Hemorrhage

A case of hemorrhage was simulated for 30 mins with a blood loss rate of 1 L
Hr

. The blood

leakage was created by adding a branch to the arterial side of the model, which provided

a path for blood to exit the system at a constant rate. Figure 3-9 illustrates how the

various pressures change versus time and how the control system responds. The bleeding

causes the pressures to fall, thereby activating the control system, which increases the heart

rate, peripheral resistance and ventricular contractility, and decreases zero-pressure venous

volume. All the mentioned actions executed by the control system serve to increase ABP,

hence the control system responds as expected.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3-7: Open-loop step response comparison of the nominal
parasympathetic filter and its approximations.

3.3.2 Left Myocardial Infarction (MI)

A left myocardial infarction was simulated by disconnecting the left end-systolic compliance

(Ces
l ) from the control system. This compliance was then explicitly changed from its nom-

inal value of 0.4 to 1.8 mL
mmHg

according to a ramp function over the period of a minute.

Figure 3-10 shows the plots of the various pressures along with the control system response.

Increasing Ces
l decreases the contractility of the left ventricle which causes ABP to drop.

Consequently, the control system increases heart rate, peripheral resistance and right ven-

tricular contractility, and decreases the zero-pressure venous volume. Once Ces
l reaches the

value of 1.8 mL
mmHg

and remains constant, the control system output levels off, indicating how

the short-term control system eventually adapts to a disease condition.
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Figure 3-8: Parasympathetic block output during hemorrhage and left MI simulations using
different approximations for the parasympathetic filter.

3.4 Concluding Remarks

The arterial baroreflex adds an element of reality to the model by implementing short-

term cardiovascular control. This addition enhances the model’s ability to represent sudden

physiological changes more accurately. With the implementation and qualitative validation

of the control system, the model construction is complete, and we can now turn our focus

to parameter estimation.
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Figure 3-9: Hemorrhage simulation.

0

50

100

150
Left ventricular pressure 

m
m

H
g

60

80

100

120
Arterial blood pressure

m
m

H
g

0

10

20

30
Pulmonary venous pressure

m
m

H
g

0 50 100 150
5

6

7
Central venous pressure

time in s

m
m

H
g

(a) Pressure waveforms versus time.

0

1

2
Left ventricular end−systolic compliance

m
L

/m
m

H
g

1

1.05

1.1
Peripheral resistance

P
R

U

2300

2400

2500
Zero pressure venous volume 

m
L

0 50 100 150
1.05

1.1

1.15

1.2

Right ventricular end−systolic compliance

time in s

m
L

/m
m

H
g

0 50 100 150
70

80

90
Heart Rate (HR)

b
p

m

time in s

(b) Effector variables versus time.

Figure 3-10: Left MI simulation.
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Chapter 4

Parameter Estimation using

Waveform Data

The previous chapters were focused on the topic of forward-modeling: we outlined and

described the implementation of a pulsatile cardiovascular model that is capable of simulating

both normal and abnormal physiology. In this chapter, we tackle the problem of inverse-

modeling or parameter estimation using waveform data.

Given observable patient data in the form of ABP, CVP, and PAP signals, we would

like to estimate the underlying parameters of the model in an effort to track patient state.

The observable signals, however, are generally not rich enough to allow for the estimation

of all the parameters. This leads to an ill-conditioned estimation problem. To overcome the

ill-conditioning, we employ subset selection, a methodology that improves the conditioning

of the problem by reducing the dimensionality of the estimation problem. Such a scheme

was successfully adopted by Heldt [7] to estimate cardiovascular parameters during transient

responses to head-up tilt, using a more complex underlying computational model.

First, we give a general outline of a nonlinear least squares optimization technique. Next,

we illustrate the problem of ill-conditioning, and subsequently we describe the subset selec-

tion solution to improve the conditioning of the problem. Finally, we describe the set-up of

the estimation experiments we performed using both steady-state and transient data, and
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we present their results.

4.1 Nonlinear Least Squares and Subset Selection

4.1.1 Nonlinear Least Squares Optimization

In the context of parameter estimation, the nonlinear least squares optimization method

iteratively arrives at the best estimates for the parameters of an underlying system by mini-

mizing the error between the model output and the observation. Let rrr(θ) = ŷ̂ŷy(θ)−yyy denote

the residual error, where ŷ̂ŷy(θ) ∈ R
n corresponds to the model output, which is a function of

the parameter vector θ ∈ R
m, and where yyy ∈ R

n refers to the observation (or data) vector.

The cost function we try to minimize is a weighted sum of squares of residual errors and is

given as follows:

Φ(θ) =
1

2
(rrrTQrQrQr) (4.1)

where QQQ ∈ R
nxn is a positive definite matrix of weights, usually diagonal, that weighs the

individual error components1.

The second-order Taylor series expansion Ψ(θ) of Φ(θ) gives a good approximation of

the cost function for small perturbations of Δθ = θ1 − θ0 around the initial estimate θ0.

Ψ(θ) is given as follows:

Ψ(θ) = Φ(θ0) +

[
∂Φ

∂θ

]
θ0

Δθ +
1

2
Δθ

T

[
∂2Φ

∂θ
2

]
θ0

Δθ (4.2)

where [∂Φ/∂θ]
θ0

and
[
∂2Φ/∂θ

2
]
θ0

denote the matrices of first- and second-order derivatives

evaluated at the current best estimate θ0; these matrices are respectively termed the Jacobian

(or gradient) and Hessian matrices. To find the Δθ that minimizes Ψ(θ), we equate its

gradient with respect to Δθ to zero:

∂

∂Δθ
Ψ(θ) =

[
∂Φ

∂θ

]
θ0

+

[
∂2Φ

∂θ
2

]
θ0

Δθ = 0

1For the purposes of our analyses, we consider QQQ to be diagonal.
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To find the stationary point θ1, the previous equation can be rearranged as follows:

[
∂2Φ

∂θ
2

]
θ0

(θ1 − θ0) = −
[
∂Φ

∂θ

]
θ0

(4.3)

If the inverse of the Hessian exists, θ1 is given by:

θ1 = θ0 −
[
∂2Φ

∂θ
2

]
−1

θ0

·
[
∂Φ

∂θ

]
θ0

(4.4)

If the Hessian is positive definite, Ψ(θ1) < Ψ(θ0), making θ1 a reasonable estimate of the

minimizing value of Φ(θ); hence θ1 assumes the role of θ0 in the next iteration [25]. The iter-

ations continue until some exit criteria are satisfied, which usually include setting thresholds

on the cost function value, and on the distance between two consecutive parameter estimates.

Refinements are possible, where one picks θ1 in the direction suggested by Equation 4.4, but

taking a scaled version of the indicated step. However, we use only the basic method here.

For the cost function defined by Equation 4.1, the gradient is given as:

[
∂Φ

∂θ

]
= JJJTQQQrrr(θ) where Jij =

∂ri(θ)

∂θj

=
∂ŷi(θ)

∂θj

(4.5)

JJJ ∈ R
nxm is the Jacobian matrix of the error vector with respect to the parameter vector.

The elements of the Hessian matrix HHH ∈ R
mxm, are given by:

Hij =
∂2Φ

∂θi∂θj

= (JJJTQJQJQJ)ij +
n∑

l=1

n∑
p=1

Qlp · rp · ∂2rl

∂θi∂θj

In the presence of small residuals, the Gauss-Newton approximation to the Hessian states

that the terms containing the residuals can be ignored, thus giving the following approxima-

tion:

Hij =
∂2Φ

∂θi∂θj

≈ (JJJTQJQJQJ)ij

Substituting the expressions for the cost function derivatives into Equation 4.3, we obtain
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the following equation for the parameter estimate updates:

JJJTQQQJJJ · (θi+1 − θi) = −JJJTQQQ · rrr (4.6)

The Gauss-Newton approximation reduces the nonlinear least squares optimization problem

to a series of linear least squares equations that are solved iteratively.

Let RRR represent the Hessian matrix or its Gauss-Newton approximation. To illustrate

the problem of ill-conditioning, we follow the reasoning presented by Heldt [7], based on the

arguments of Burth and co-workers [26]. If the matrix RRR is rank-deficient, then it is singular,

with at least one of its eigenvalues at zero, and its column space does not span the entire Rm

space. Consequently, the parameter update vector can be arbitrarily varied in the direction

of any ϑ that belongs to the null-space of RRR, without affecting the error criterion:

RRR · (θi+1 − θi + ϑ) = RRR · (θi+1 − θi) + RRR · ϑ = RRR · (θi+1 − θi) = −JJJTQQQrrr

Thus, if RRR is singular, then the model parameters are not uniquely determinable from the

available observation data; such an estimation problem is said to be over-parameterized.

Typically though, RRR is not exactly singular, but nearly so, with its largest singular value

much greater than its smallest. Nearness to singularity is measured by the condition number,

κ(RRR), which, for real and symmetric matrices, is given by the ratio of the largest to the

smallest eigenvalues. This nearness to singularity gives an ill-conditioned problem, in which

small numerical errors or noise in the underlying data can radically modify the solution.

To overcome the problem of ill-conditioning, we turn to the subset selection algorithm

that determines which parameters should be discarded from the estimation formulation in

order to improve the conditioning of the system.

4.1.2 Subset Selection

Subset selection aims to identify the parameter axes that lie closest to the ill-conditioned

directions of the Hessian matrix [26]. As the error criterion varies very slowly in the direction
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of ill-conditioned parameter axes, we choose to fix the corresponding parameters at prior

values while the estimation process is carried out with a reduced-order formulation. Though

fixing the ill-conditioned parameters introduces some bias into the estimates, the effect of the

bias is offset by the improved reliability with which the rest of the parameters are estimated.

The number of well-conditioned parameters is determined from the structure of the

Hessian eigenspectrum. If the Hessian eigenspectrum contains ρ large eigenvalues and m−ρ

small ones, then this indicates that the Hessian has a numerical rank of ρ, and that only the

corresponding ρ parameters should be included in the estimation formulation. The reduced-

order estimation problem involves the use of reduced dimension Jacobian and Hessian ma-

trices, indicated by JJJρ and HHHρ respectively. JJJρ contains ρ columns of the original Jacobian

matrix that are strongly independent, which results in a small condition number for the

corresponding HHHρ.

The following procedure, based on the work of Vélez-Reyez [27] and as described in Burth

and co-workers [26], outlines the algorithm for subset selection:

1. Using an initial parameter vector estimate θ̂0, calculate the eigendecomposition of

HHH(θ̂0): HHH = VVV ΛVVV , such that the eigenvalues in Λ are in descending order.

2. Determine ρ such that the first ρ eigenvalues of HHH are much larger than the remaining

m − ρ ones.

3. Partition VVV = [VVV ρ VVV m−ρ].

4. Determine a permutation matrix PPP by constructing a QR decomposition with column-

pivoting for VVV T
ρ i.e. determine PPP such that:

VVV T
ρ ·PPP = QQQ ·RRR

where QQQ is an orthogonal matrix and the first ρ columns of RRR form an upper triangular

matrix.

5. Use PPP to re-order the parameter vector θ according to θ̃ = PPPT
θ.
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6. Partition θ̃ = [θ̃
T

ρ θ̃
T

m−ρ]
T, where θ̃

T

ρ contains the first ρ elements of θ̃. Fix θ̃m−ρ at

prior estimate ˆ̃
θm−ρ.

7. Compute ˆ̃
θ by solving the reduced-order problem ˆ̃

θ = arg min
θ̃

Φ(θ̃) subject to ˆ̃
θm−ρ =

θ̃m−ρ.

4.1.3 Jacobian Calculation and Scaling

Although methods exist to compute the Jacobian matrix analytically, the large number of

parameters and output variables warrants the use of a finite-difference approximation. We

used a two-sided finite difference method with a step-size of 4% of the nominal parameter

values. Equation 4.7 illustrates the finite-difference approximation:

JJJ(θ) =
∂ŷ̂ŷy(θ)

∂θ
≈ ŷ̂ŷy(θ + Δθ) − ŷ̂ŷy(θ − Δθ)

2Δθ
(4.7)

As the input parameter values span several orders of magnitude and have different units

of measurement, the columns of the Jacobian need to be normalized. Normalizing the

columns would lead to meaningful comparisons between the column norms, which represent

the strengths with which perturbations in parameters affect the entire observable output.

Moreover, the Jacobian rows also need to be normalized, as they too span several orders of

magnitude. The observable output consists of single-cycle waveforms of ABP, CVP, and PAP

signals, which vary greatly in magnitude, not only relative to each other, but also within a

signal itself during a cardiac cycle. In order to prevent the residual errors in any one output

variable from dominating, which can cause a loss of information contained in the rest of the

residuals, the rows of the Jacobian need to be normalized. Furthermore, the subset selection

algorithm is not scaling-invariant [28], hence meaningful scalings of the Jacobian can be used

to improve the curvature of the error-criterion surface and thereby help in identifying the

well-conditioned parameters.

We applied two different kinds of scalings to the Jacobian. The first scheme, which

we shall refer to as nominal scaling, scaled the columns of the Jacobian by the nominal
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parameter values (correspondingly scaling the parameter variations by the inverses of the

nominal parameter values), and scaled the rows by some characteristic output values, which

in our case, were the nominal output values. Such a scaling leads the columns of the Jacobian

to contain percentage changes in observable output as a response to percentage changes in

parameter values.

The second scheme, which we shall refer to as range scaling, scaled the columns by the

dynamic ranges of the parameters instead of the nominal values2. Subsequently, the rows

were scaled so that they would have a norm of unity, thereby preventing the residual errors

in any one output variable from dominating. Such a scaling scheme gives a sense of how

the parameters affect normalized output when they are perturbed as a percentage of their

dynamic ranges.

In the context of solving the nonlinear least squares problem, row scaling leads to the

weighting of residuals, which is handled by the QQQ matrix in Equation 4.1. Column scaling,

however, needs to be explicitly added, and modifies the parameter update equation (see

Equation 4.6) to the following:

MMMJJJTQQQJJJMMMp̂̂p̂p = −MMMJJJTQQQrrr (4.8)

where MMM ∈ R
mxm is a diagonal matrix of column scalings and p̂̂p̂p = MMM−1 · (θi+1 − θi). The

above equation is obtained by replacing each occurrence of JJJ in Equation 4.6 with its column

scaled version JMJMJM. Equation 4.8 can be re-written as follows:

(
√

QJM
√

QJM
√

QJM)T · (
√

QJM
√

QJM
√

QJM) · p̂̂p̂p = −(
√

QJM)
√

QJM)
√

QJM)T · r̃̃r̃r (4.9)

where r̃̃r̃r =
√

Q
√

Q
√

Qrrr. The Gauss-Newton approximation of the Hessian using the scaled version

of the Jacobian is therefore given as:

HHH ≈ (
√

QJM
√

QJM
√

QJM)T · (
√

QJM
√

QJM
√

QJM) (4.10)

2See Appendix B for a list of all the independent parameters of the model and their range of values.
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(a) Eigenvalue spectrum of the Hessian approximation
under the nominal scaling scheme.
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(b) Eigenvalue spectrum of the Hessian approximation
under the range scaling scheme.

Figure 4-1: Eigenvalue spectrum of the Hessian approximation under the two different scaling
schemes applied.

Table 4.1: Parameters identified as being well-conditioned by the subset selection algorithm.
Parameter no. Nominal Scaling Range Scaling

1 Distending blood volume (DBV) Right end-diastolic compliance (Ced
r )

2 Peripheral Resistance (Ra) Peripheral Resistance (Ra)
3 Right end-diastolic compliance (Ced

r ) Distending blood volume (DBV)

4.1.4 Application of the Subset Selection Algorithm

We applied the subset selection algorithm to the problem of estimating cardiovascular pa-

rameters using single-cycle waveforms of ABP, CVP, and PAP signals. Figure 4-1 shows a

plot of the eigenvalue spectrum of the Hessian approximation under the two different scal-

ing schemes applied. The Hessian approximation has three strong eigenvalues under both

scalings, indicating the existence of three well-conditioned or “active” parameters. Table 4.1

lists the parameters identified as being well-conditioned under the two scaling schemes. Al-

though the sequence of the active parameters is different, both scalings lead to the selection

of the same three parameters. Thus, in our application, the type of scaling did not affect

the solution of the subset-selection algorithm.
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4.1.5 Description of the Estimation Problem

Guided by the results of the subset selection algorithm, we attempted to estimate the well-

conditioned parameters using single-cycle waveforms of ABP, CVP, and PAP signals, in both

steady-state and transient conditions. We used the built-in Matlab routine, ‘lsqnonlin’, to

apply the Gauss-Newton nonlinear least squares optimization in an effort to recover the pa-

rameters. The rows of the Jacobian were scaled by the target output values and the columns

of the Jacobian were scaled by nominal parameter values. As we are interested in judging

the performance of the estimation algorithm, we must know the true values of the underlying

parameters. We therefore used our computational model to produce synthetic data, which

was then treated as “measurements” to which we applied the estimation algorithm.

For the estimation problem using steady-state data, we generated target data using ran-

domized parameters. Each parameter, θi, was perturbed using a Gaussian distribution

∼ N(θ0
i , 10%θ0

i ), where θ0
i is the nominal parameter value. In an attempt to investigate

the benefit of using subset selection, this target data was used in two different estimation

schemes: one in which only the active parameters were estimated while the rest were fixed

at their nominal values, and one in which all the parameters were estimated.

Next, we generated transient data by simulating several cases of hemorrhage that lasted

for 30 minutes each. The data was generated using randomized parameters (same random-

ization scheme as before), and each waveform was perturbed with additive noise from a

Gaussian distribution ∼ N(0, 1.7%mi), where mi refers to the cycle-average of the wave-

form. For each hemorrhage case, the active parameters were estimated six times at uniform

time intervals.

4.2 Results

4.2.1 Estimation using Steady-State Waveform Data

Table 4.2 summarizes the relative errors incurred in estimating the active parameters from

steady-state waveform data under two different estimation formulations:
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Table 4.2: Estimation error statistics for the active parameters under two schemes: estimat-
ing only the active parameters with the ill-conditioned ones fixed at their nominal values,
and estimating all the model parameters.

Estimating only the Estimating all the
active parameters parameters

Active parameter Mean St. deviation Mean St. deviation

DBV 6.35% 4.77% 13.30% 11.39%
Ra 7.38% 5.78% 16.12% 10.20%
Ced

r 7.07% 7.11% 15.33% 10.66%

• Estimating only the active parameters while the rest are fixed at their nominal values.

• Estimating all the model parameters.

We observe that reducing the dimensionality of the estimation problem improves the mean

reliability of the active parameter estimates by more than 50%. Figure 4-2 illustrates the

plots of the estimated versus actual well-conditioned parameters for the individual runs of

the reduced dimensionality estimation experiment.

The estimation errors that occur when recovering the reduced set of parameters are

mainly due to the bias introduced by fixing the values of the ill-conditioned parameters. In

an attempt to reduce the error between model output and observed data, the estimation

algorithm distorts the active parameter estimates in order to compensate for the fixing of

the ill-conditioned parameters. As such, large deviations from nominal value in any ill-

conditioned parameter that has similar effect on model output as any one of the active

parameters (or their combination), would lead to significant estimation errors.

In our estimation experiments, large deviations in the venous compliance (Cv) value

from its nominal value were seen to lead to significant errors in DBV estimates, indicating

that these two parameters affect the model output in a similar fashion. This fact was

verified mathematically by analyzing the Jacobian matrix. Recall that the columns of the

Jacobian consist of ∂yyy

∂θj
(see Equation 4.5), which is a measure of parametric sensitivity for

a particular parameter θj. The columns of the Jacobian therefore indicate how the model
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Figure 4-2: Estimated active parameters recovered using steady-state waveform data vs
actual active parameters.

output changes in R
n space in response to changes in parameter values. If any of the columns

of the Jacobian are collinear, then the corresponding parameters affect the model output in

the same direction within the R
n space. It turns out that the columns of the Jacobian

corresponding to Cv and DBV ( ∂yyy

∂θDBV
, ∂yyy

∂θCv
) are almost collinear, with the angle between

them being 0.99π radians. Hence, changes in these two parameter values can have an almost

indistinguishable effect on the model output, with opposite signs. In fact, a straightforward

explanation exists for this observation. For a given venous pressure and DBV, a decrease

in CV would decrease the venous volume and hence would increase the blood volume in the
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Table 4.3: Estimation error statistics for the active parameters with Cv and Ced
l fixed at

their actual values.
Active parameter Mean St. deviation

DBV 1.06% 0.66%
Ra 3.14% 1.42%
Ced

r 4.14% 7.11%

other compartments. Thus, a decrease in Cv would lead to similar changes in model output

as an increase in DBV.

Similarly, poor estimates of Ra and Ced
r were correlated to large deviations in the left end-

diastolic compliance (Ced
l ) value from its nominal value. Analysis of the Jacobian revealed

that ∂yyy

∂θ
Ced

l

almost lies in the plane spanned by ∂yyy

∂θRa
and ∂yyy

∂θ
Ced

r

: the angle between ∂yyy

∂θ
Ced

l

and

its projection on the plane spanned by ∂yyy

∂θ
Ced

r

and ∂yyy

∂θRa
is 0.12π radians. Thus, deviations in

Ced
l values can somewhat be compensated for by changes in the values of Ra and Ced

r .

To validate our analysis of major contributors of bias, we re-ran our estimation experi-

ments with Cv and Ced
l fixed at their actual values instead of their nominal ones. Table 4.3

summarizes the estimation errors incurred under this scheme. We observe that the mean

estimation error for DBV was reduced by more than 80%, whereas the mean errors for the

other two parameters were reduced by more than 40% each. These results confirm our analy-

sis that uncertainties in the values of Cv and Ced
l can lead to significant errors in estimating

the active parameters.

4.2.2 Estimation using Transient Waveform Data (Hemorrhage

Data)

In tracking the active parameters through time during a transient, there is an opportunity

to overcome some of the bias introduced due to the unknown values of the ill-conditioned

parameters. For example, during a hemorrhage, DBV is constantly changing, hence estimat-

ing change in DBV rather than actual DBV would remove some of the bias in the estimate.

Figure 4-3 illustrates the plot of estimated versus actual change in DBV for all the hem-
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Figure 4-3: Estimated vs actual change in DBV for all
the simulated hemorrhage cases analyzed.

orrhage cases3. The estimation error statistics are overlaid on the plot. The estimates are

reasonably close to the actual change in DBV, with a mean error of less than 5%.

Figure 4-4a shows the plot of estimated vs actual Ra for all the hemorrhage cases. As the

values of Ra are small, and the values of changes in Ra are even smaller, the numerical errors

associated with the estimates of either Ra, or changes in Ra, are large and unrepresentative of

the quality of the estimates. Nevertheless, a strong correlation exists between the estimated

and actual values, indicated by their almost linear relationship in the plot. In order to exploit

the observed correlation in an attempt to improve the estimation, we performed a first-point

calibration. As measures of cardiac output (CO) are occasionally available in the ICU, they

can be used in conjunction with the mean ABP and CVP measurements to calculate Ra.

We assume that for each hemorrhage case, the initial value of peripheral resistance, Rk,i
a , is

known, where k represents an individual hemorrhage case. The ratio of the initial peripheral

resistance value to its estimated value is used to determine a gain factor, gk, which scales

3Recall that for each hemorrhage case, the active parameters were estimated six times at uniform time
intervals.
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Figure 4-4: Estimated vs actual Ra for all the hemorrhage cases analyzed.

all subsequent estimates of Ra during the hemorrhage case k. This scaling procedure, where

the gain factor is constant and calculated based on the first estimate, is known as first-

point calibration. Figure 4-4b shows the estimation results for Ra obtained with first-point

calibration. The resulting estimation errors are small, with the mean error standing at less

than 2%. However, the estimates exhibit a deviating trend from the y = x line, indicating

the need for re-calibration as often as possible.

For each hemorrhage simulation, the value of Ced
r remained constant and did not change

during the hemorrhage; therefore, we were unable to exploit the bias removal techniques

used previously for the estimates of DBV and Ra. Figure 4-5 illustrates the results for the

Ced
r estimates. As multiple Ced

r estimates were obtained for every case, each value on the

plot represents the mean value of the estimates for each case. The estimation errors for Ced
r

are relatively higher compared to those of DBV and Ra, however, the estimates are still quite

reasonable, with mean error less than 8.0%.
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4.3 Concluding Remarks

In this chapter, we focused on parameter estimation using waveform data. We employed a

nonlinear least squares optimization technique to recover the model parameters and we used

subset selection to improve the conditioning of the problem. We observed that the reduced

dimensionality estimation problem improved the reliability of the estimated parameters sub-

stantially. Furthermore, the estimation algorithm showed promising results when tested on

simulated steady-state and transient data.
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Chapter 5

Parameter Tracking using

Beat-to-Beat Averaged Data

In the previous chapter, we investigated the use of subset selection to reduce the dimensional-

ity of the estimation problem. The reduced dimensionality problem increased the reliability

of the estimated parameters and outperformed the full-fledged estimation of all the model

parameters. In this chapter, we focus on another method of dimensionality reduction which

results from a simplifying assumption.

Depending on the disease condition, only a selected few parameters change in time as the

disease state progresses. In this case, it is not required to estimate all the parameter values;

estimating only the disease-dependent, physiologically significant parameters would suffice

to reveal information about patient state. If we assume prior knowledge of initial parameter

values, we need to track only the physiologically significant parameters in time, and thus the

dimensionality of the estimation problem is reduced.

We carry out our investigation in the context of a real patient hemorrhage case. As

we are interested in tracking parameters over transients spanning long periods of time, we

use beat-to-beat averaged data for estimation instead of waveform data. The averaged data

sufficiently represents long-term transients, and hence it is not necessary to use the high-

resolution waveform data. Though we are using a pulsatile computational model, the model
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output can be averaged to represent beat-to-beat trend data.

We begin by providing a brief patient history and description of the data available.

Next, we outline the estimation algorithm and highlight some issues faced during parameter

estimation. Subsequently, we present the results of the algorithm and provide concluding

remarks.

5.1 Brief Patient History

The patient is an 83 year old female who was admitted to the ICU after falling at her nursing

home. She complained of pains in her left knee and hip; an x-ray revealed that she had a loose

acetabular shell and possibly a loose femoral head. As the patient was on anticoagulants due

to a previous aortic valve replacement, it was decided not to take any immediate surgical

action, but wait for the anticoagulant effects to wear off.

During the waiting period, the patient suddenly developed pain in her lower right ab-

domen. Upon further examination, a 6x6 cm mass was found in the right abdomen caused

by a lumbar artery bleed. The patient was then transferred to interventional radiology where

the bleed was embolized. After the embolization procedure, the patient was returned to the

ICU where she made a full recovery with the help of fluid resuscitation and vasoactive drugs.

5.2 Patient Data for Parameter Tracking

For purposes of parameter tracking, we consider a time-period of approximately 50 minutes

pre-embolization, when the patient vital statistics displayed some interesting characteristics.

Figure 5-1 shows a plot of the patient heart rate and blood pressure during that period. The

heart rate stays relatively constant at around 130 beats/min, indicating that the control

system may have saturated, while the blood pressure goes through significant transients.

The only other relevant information available for this time-period consists of clinical

intervention data regarding medication and fluid resuscitation. This information is necessary

for determining the causes for the observed changes in patient state; however, it may lack
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Figure 5-1: Heart rate (upper panel) and arterial blood pressure
(lower panel) patient data.

time accuracy. Information regarding changes in medication and their doses is usually hand-

recorded afterwards by the administering nurse, using approximate, rounded-off time-stamps.

Therefore, the times at which the changes actually occur may differ from the recorded ones.

Moreover, fluid resuscitation information is only recorded on an hourly basis, hence the exact

time of a fluid bolus administration is not available. Furthermore, hand-recorded information

is often prone to errors and omissions.

Figure 5-2 shows the time-series plot of a vasopressor drug called Levophed (the beat-

to-beat averaged ABP data is also shown so that the medication data can be put into

perspective). Vasopressors serve to increase blood pressure by constricting the arterioles.

Levophed was the only drug whose dosage changed during this time period. The doses of

the rest of the administered drugs remained constant not only within this time-period, but

also in its neighborhood; hence these other medications were not considered to be significant

contributing factors to the patient’s physiology for this time portion. Although there are no

recorded fluid boluses administered during this time-period, our in-house medical experts

believe that absence to be a recording artifact. Expert medical opinion suggests that the
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Figure 5-2: Levophed administration (top panel) and beat-to-beat
averaged patient ABP data (bottom panel).

rises in blood pressure at around t= 1000s, and again at around t= 1100s, are results of fluid

bolus administrations.

The information available is clearly not sufficient to derive, or even get an idea of, the

actual values of the underlying physiological parameters. In this case, there is no way to

judge the performance of a parameter estimation algorithm, as the quality of the estimates

cannot be determined. To overcome this problem, we adopted an approach whereby we first

used our cardiovascular model to simulate data that matched the patient ABP data, and

then we used the simulated data to perform estimation. Using this methodology, the values

of the model parameters are known, so the performance of the estimation algorithm can be

judged quantitatively.

5.3 Simulating Patient Data

Given anthropometric measurements of a patient, allometric scaling can be applied to nomi-

nal parameter values to obtain a set of parameters that are more representative of a particular

74



individual [7]. However, anthropometric measurements for this patient were not available,

hence we used nominal values for all parameters except heart rate and distending blood

volume (DBV). The patient heart rate data is available (see Figure 5-1) and is considered to

be relatively constant; the heart rate parameter was therefore fixed at 130 beats/min in our

simulation. As this is a case of hemorrhage, we reduced the initial DBV until the simulator

output matched the initial patient ABP data.

The model used to simulate patient data included a leak on the arterial side to model

bleeding, and it had the capability to incorporate a time-varying peripheral resistance (Ra).

These changes add two new parameters to the model: bleeding rate and rate of change of

Ra. To capture the dynamics displayed by blood pressure data, we modified bleeding rate

and rate of change of Ra following some reasonable assumptions based on the the patient

pathology and nurse’s notes. The changes in Ra were guided by Levophed medication;

whenever Levophed dose went down, we reduced Ra and vice versa1. The partial recoveries in

blood pressure at times t=1000s and t=1100s were simulated by administrating fluid boluses.

Figure 5-3 shows a plot of simulated and actual beat-to-beat averaged blood pressure data.

The simulated plot has regions marked 1-10 which correspond to the following actions taken

to simulate them:

1) 0 − 500s: Bled @ 0.76 mL/s.

2) 500 − 700s: Bled @ 0.76 mL/s + Ra ramped down from 1.1 to 0.8 PRU.

3) 700 − 1010s: Bled @ 0.76 mL/s.

4) 1010− 1040s: Bled @ 0.76 mL/s + Bolus of 470 mL administered as a ramp function.

5) 1040 − 1100s: Bled @ 0.6 mL/s.

6) 1100 − 1120s: Bled @ 0.6 mL/s + Bolus of 570 mL administered as a ramp function.

1It was taken into account that the time recordings for Levophed doses may lag behind the actual times.
For example, the effects of recorded dose changes at around t=1400s, and again at around t=2300s, seem to
occur prior to the recorded times, indicating that the medication recordings may have followed the actual
times at which the changes occurred. See Appendix C for an attempt to validate the assumptions made
regarding changes in peripheral resistance.
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Figure 5-3: Simulated beat-to-beat averaged ABP data (top panel) and actual patient ABP
data (bottom panel).

7) 1120 − 1500s: Bled @ 0.85 mL/s + Ra ramped down from 0.8 to 0.65 PRU.

8) 1500 − 2200s: Bled @ 0.6 mL/s.

9) 2200 − 2250s: Bled @ 0.25 mL/s + Ra ramped up from 0.65 to 0.95 PRU.

10) 2250 − 3000s: Bled @ 0.25 mL/s + Ra ramped up from 0.95 to 1.2 PRU.

The simulated ABP data follows the transients exhibited by the real patient data reason-

ably well. Next, we added noise to each simulated point using a Gaussian distribution,

∼ N(0, 2%pi), where pi refers to the ith point. Figure 5-4 shows a plot of the noise-corrupted

simulated ABP data and the actual patient data. We observe that the noisy simulated data

closely follows the real patient data, and therefore the simulated data is said to be repre-

sentative of the actual. Henceforth, the simulated data will be referred to as pseudo-patient

data.
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Figure 5-4: Beat-to-beat averaged ABP data: actual and simulated
with additive noise.

Having matched the patient data, we assume knowledge of the initial patient state and

we attempt to estimate and track certain parameters of physiological interest.

5.4 Parameter Tracking

As the bleeding rate and rate of change of Ra are responsible for the pathology of the

patient, we track these two parameters in time. We assume that the initial patient state

is known; this state includes the initial values of all the parameters and state variables2.

To estimate and track the parameters in time, the pseudo-patient ABP data is divided

into non-overlapping, 100s windows which are used to recover the two parameters using the

Gauss-Newton nonlinear least squares estimation technique. In addition to estimating the

two parameters of interest, the initial conditions for all the frames, except the initial one,

need to be estimated. In order to estimate the initial conditions for the current frame, we

2For the start of the simulation, the initial state variables are determined by the initial parameter values
using Equations 2.18 - 2.25.
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run the model for the time duration of a frame using the parameter estimates and initial

conditions of the previous frame. The end-diastolic3 conditions for the last beat in this

simulation are then used as initial conditions for the current frame. As the fluid boluses

administered are assumed to be known quantities, the volume changes are accounted for

when estimating the parameters during the times of fluid resuscitation.

First, we employed this algorithm on noise-free pseudo-patient data so that any issues

with the estimation formulation could be easily identified. We encountered two issues with

this estimation scheme, which are elaborated on next.

Choice of Observable Data It turns out that bleeding rate and rate of change of Ra have

similar effects on ABP data. In fact, the angle between the Jacobian columns corresponding

to these two parameters is 0.067π radians, indicating that they are almost collinear. Thus,

using only ABP data for estimation leads to a degeneracy in the system, as the two parameter

estimates can be distorted without affecting the error criterion. To overcome this problem,

we assume that the pseudo-patient central-venous pressure (CVP) is also observable and can

be used to estimate the parameters in conjunction with ABP data. Figure 5-5 illustrates the

plot of the noise-free, pseudo-patient beat-to-beat averaged CVP data. Including the use

of CVP for parameter recovery empowers the estimation algorithm with greater discerning

ability, as the two parameters tend to affect ABP and CVP differently. For example, an

increase in Ra near the end of the time-period causes ABP to increase, whereas CVP still

decreases.

Estimating the Initial Conditions Under the scheme described to estimate initial con-

ditions, the end-diastolic conditions of the last beat in the previous frame are used as initial

conditions for the current frame. This method ignores the effects of the intra-beat dynamics

that occur within the last beat of the previous frame. Though the intra-beat dynamics last

for only a very short-period of time, ignoring their effects caused severe distortion in the

parameter estimates. Moreover, as the parameter estimates for the current frame depend on

3The simulator expects initial conditions to be end-diastolic.
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Figure 5-5: Simulated beat-to-beat averaged CVP data.

the estimates of the previous frame, any error incurred propagates and builds up.

Consider the frames during which fluid resuscitation takes place. Estimating a frame’s

initial conditions using the proposed methodology ignores the volume of fluid that is ad-

ministered for the duration of a beat. Figure 5-6 illustrates this problem diagrammatically.

Neglecting the volume administered within a beat leads to significant estimation errors, which

build up in subsequent frames. Figure 5-7a shows a portion of data that corresponds to a

frame that follows the end of fluid administration. The plot also shows the reconstruction of

the same data portion using exact parameter values and estimated initial conditions which

neglect the volume of fluid administered during the last beat of the previous frame. We

observe that there is a mismatch between the data and its reconstruction, which causes the

estimation algorithm to distort the parameters in an attempt to better match the pseudo-

patient data.

To overcome this problem, we included ABP and CVP initial condition estimation in the

nonlinear least squares problem, while the initial conditions for the rest of the state-variables

were estimated as described before. Estimating the initial conditions of the observable
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Figure 5-6: Diagram depicting the neglect of intra-beat dynamics under the proposed scheme
to estimate initial conditions.

state-variables, instead of simply using previous beat values, allows for the incorporation of

intra-beat dynamics to some extent. Figure 5-7b shows the same portion of data as Figure

5-7a, along with its reconstructed version using exact parameter values and the estimated

initial conditions using the updated scheme. We observe that the two plots are almost

indistinguishable, indicating that the updated scheme performs better.

After updating our choice of observable output by including the use of CVP data for

estimation, and after improving the method of estimating initial conditions by incorporating

two of them in the nonlinear least squares formulation, we employed the estimation algorithm

on noise-corrupted pseudo-patient data. We present the results of the estimation algorithm

next.

5.5 Results

Figure 5-8 shows the plot of the estimated parameters versus the actual ones. The algorithm

does a reasonably good job of recovering and tracking the bleeding rate and rate of change of

Ra, with mean estimation error less than 6% for either case. In fact, the error distributions are

statistically indistinguishable from a 0-mean distribution, with a significance level α = 0.05.

80



beat number n

m
m

H
g

Beat-to-beat averaged ABP data

Pseudo-patient

parameters and estimated initial conditions
Reconstructed version using exact

5 10 15 20 25

81

81.5

82

82.5

83

83.5

84

84.5

85
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(b) Estimating ABP and CVP initial conditions through
nonlinear least squares.

Figure 5-7: Plot showing portion of ABP data following a fluid bolus and its reconstructed
version using exact parameters and estimated initial conditions using two different schemes.

This implies that for either case, the interval that contains the true mean of the error

distribution with probability 1 − α (0.95) includes the 0 value.

5.6 Concluding Remarks

In this chapter, we investigated the viability of temporally tracking selected model parame-

ters of physiological interest, assuming knowledge of initial values of the parameters. We

used synthetic data that was representative of a real case of hemorrhage to track bleeding

rate and rate of change of Ra. Our simulations show promising results for dynamically track-

ing selected parameters of interest. This can be of great value to patient monitoring, as the

time evolution of these parameters would reveal information about disease progression.
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Chapter 6

Conclusions and Recommendations

for Future Work

In this thesis, we explored model-based quantitative methods of estimating selected cardio-

vascular parameters over time. Tracking the time evolution of the parameters could reveal

information about disease progression and hence can be very useful for patient monitoring

purposes. Our effort was divided into two parts: constructing a computational model, and

using it for investigating parameter estimation techniques.

In this chapter, we summarize our efforts and results, after which we suggest directions

for future work.

6.1 Summary

In Chapter 2, we outlined and detailed the implementation of a pulsatile cardiovascular model

based on Davis’s CVSIM model [4]. We built the model in Simulink, which is a strong tool for

implementing dynamic systems. The abstractions provided by the building-blocks, and the

built-in functions and routines, make the reliable extension of the model relatively simple,

which is of great value in simulating various disease conditions. Furthermore, we enhanced

the functionality of the CVSIM model by adding an interstitial fluid compartment. The role
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of the interstitial compartment becomes significant during transients resulting from disease

conditions or clinical interventions that cause volume shifts between the intravascular and

interstitial spaces. Our model implementation was validated based on analysis of the intra-

and inter-cycle dynamics.

In Chapter 3, we described the implementation of the arterial baroreflex, which is a

principal component of short-term, neurally mediated control. Our implementation of the

control system was based on Davis’s extension of deBoer’s work [4, 23]. The arterial barore-

flex is modeled as a set-point controller that senses the blood pressure and responds to the

error signal, which is the deviation of the sensed pressure from the set-point. In order to

reduce the error signal, the arterial baroreflex controls sympathetic and parasympathetic

activity, which in turn affects zero-pressure venous volume, heart rate, ventricular contrac-

tility, and peripheral resistance. Previous implementations of the arterial baroreflex used

relatively coarse time-steps for the control system as compared to the rest of the model. How-

ever, as such implementations lead to aliasing effects, we implemented the control system in

continuous-time (to be handled numerically along with other continuous-time components).

Furthermore, as parasympathetic dynamics last for only a fraction of a heart beat, they do

not significantly affect the model output; we therefore simplified the parasympathetic block

implementation to a simple gain. Our implementation of the short-term control system

was qualitatively validated based on responses to simulated conditions of hemorrhage and

myocardial infarction.

In Chapter 4, we turned our attention to parameter estimation. We used a nonlinear

least squares optimization technique to estimate cardiovascular parameters based on wave-

form data that is continuously available in an ICU setting. We highlighted the problem

associated with an ill-conditioned Hessian matrix and subsequently outlined the subset-

selection algorithm that improves the Hessian conditioning by reducing the dimensionality

of the estimation problem. The subset selection algorithm identifies a subset of parame-

ters that can be estimated robustly, while the rest are fixed at their nominal values. Our

simulations show promising results for estimating well-conditioned parameters using both
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steady-state and transient data.

In Chapter 5, we explored the viability of tracking selected parameters of physiological

interest using beat-to-beat averaged data, assuming prior knowledge of initial parameter val-

ues. Our investigation was based on a real patient hemorrhage case, and involved tracking

the bleeding rate and rate of change of peripheral resistance. As the patient data available

was not sufficient to determine the actual parameter values, we used our model to match

the patient data, and then we used the simulated data for estimation so that the perfor-

mance of the estimation algorithm could be judged quantitatively. The results of Chapter

5 are encouraging, as we were able to track successfully the two parameters of physiological

significance.

6.2 Recommendations for Future Work

In conducting our research efforts, we identified the following directions for further work:

Parameter Estimation In Chapter 4, our optimization technique was constrained to

use the entire single-cycle waveforms of ABP, CVP, and PAP to estimate the cardiovascular

parameters. We followed a ‘more is better ’ approach and did not analyze the structure of the

Jacobian to determine if some signals, or sections thereof, are more suitable to recover certain

parameters over others. Further investigation needs to be conducted on the relationship

between quality of parameter estimates and the number, type, and section (e.g., systolic or

diastolic) of signals used for estimation.

So far we have only applied the estimation algorithms on synthetic data, as real patient

data with a sufficient number of observable signals and well annotated by a doctor or surgeon,

was not available. To validate the reliability of the algorithms, it is necessary to apply them

on real data. In order to do so, we need patient data with ABP, CVP, and PAP waveform

recordings. Supplementary recordings, such as cardiac output, would be helpful, as they

would play a role in judging the quality of some of the estimates.
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Estimating the Initial Values of the Parameters In Chapter 5, we assumed knowledge

of the initial values of the parameters and we tracked two of the physiologically relevant

ones using ABP and CVP signals that are continuously available in an ICU setting. In

estimating the initial values of the parameters, however, we are not limited by the data

streams that are available constantly - we can use all the available data, including cardiac

output, left-ventricular end-diastolic pressure, imaging studies, etc., to estimate the initial

values. Zhao developed a set of heuristic algorithms that used steady-state data to estimate

the parameters [16]. Further investigation should focus on developing quantitative methods

that use all available information to determine the initial values of the parameters in transient

conditions.

Cycle-Averaged Models Transients spanning long periods of time are sufficiently repre-

sented by trend data, which includes beat-to-beat averages. In such cases, the high-resolution

waveform data is not necessary for analysis. We would expect the models that ignore the fine

intra-beat dynamics and produce only cycle-averages to be more computationally efficient

and relatively simple in structure as compared to the pulsatile models. Such models could

be very useful in inverse-modeling studies, where the simplicity in their structure can be

exploited to recover the underlying parameters. Development of cycle-averaged models is a

subject of ongoing research in our group. Simple cycle-averaged models consisting of a single

heart chamber, which consider the time-varying ventricular elastance function to be either a

step function, or a piecewise linear function, have already been developed [29, 30]. Current

focus is now on extending the cycle-averaged model to include two heart chambers and a

control system.

Knowledge-Based Systems Algorithms that estimate cardiovascular parameters using

real patient data need to be integrated with knowledge-based systems to enhance their

robustness and reliability and to aid in patient monitoring. The knowledge-based systems

can be trained to interpret the physiological significance of parameter values, and using

the estimates, they can help in generating hypotheses regarding patient state, track patient
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trajectory, and generate alarms bases on physiologically significant events.
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Appendix A

Updated CVSIM Model Equations

Figure A-1 shows the circuit analog of the updated CVSIM model with the interstitial

compartment. Applying Kirchhoff’s Current Law (KCL) to the circuit topology of the model,

the following set of equations is obtained:

dPl

dt
=

q̇li − q̇lo − (Pl − Pth) · dCl(t)/dt

Cl(t)
(A.1)

dPa

dt
=

q̇lo − q̇a

Ca

(A.2)

dPv

dt
=

q̇a − q̇int − q̇ri

Cv

(A.3)

dPint

dt
=

q̇int

Cint

(A.4)

dPr

dt
=

q̇ri − q̇ro − (Pr − Pth) · dCr(t)/dt

Cr(t)
(A.5)

dPpa

dt
=

q̇ro − q̇pa

Cpa

(A.6)

dPpv

dt
=

q̇pa − q̇li

Cpv

(A.7)
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Figure A-1: Circuit analog of the updated CVSIM model.

The compartmental flow rates are obtained from the defining equation for resistors:

q̇li =

⎧⎪⎨
⎪⎩

Ppv−Pl

Rli
if Ppv > Pl

0 otherwise

(A.8)

q̇lo =

⎧⎪⎨
⎪⎩

Pl−Pa

Rlo
if Pl > Pa

0 otherwise

(A.9)

q̇a =
Pa − Pv

Ra

(A.10)

q̇int =
Pv − Pint

Rint

(A.11)

q̇ri =

⎧⎪⎨
⎪⎩

Pv−Pr

Rri
if Pv > Pr

0 otherwise

(A.12)

q̇ro =

⎧⎪⎨
⎪⎩

Pr−Ppa

Rro
if Pr > Ppa

0 otherwise

(A.13)

P P
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The initial conditions for all the compartments except the interstitial compartment are

calculated using Equations 2.18 - 2.25. As no net exchange of volume takes place between the

intravascular and the interstitial spaces in steady-state, the initial interstitial compartment

pressure is set equal to the initial venous pressure.
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Appendix B

Independent Parameters of the

CVSIM Model
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Table B.1: Independent Parameters of the CVSIM Model (adapted from Heldt [7]).
Description Symbol Unit Value

Left end-systolic elastance Ees
l

mmHg

mL
2.5 ± 0.6

Left end-diastolic elastance Eed
l

mmHg

mL
0.1 ± 0.015

Right end-systolic elastance Ees
r

mmHg

mL
0.83 ± 0.51

Right end-diastolic elastance Eed
r

mmHg

mL
0.1 ± 0.043

Left inflow resistance Rli PRU 0.01 ± 0.005

Left outflow resistance Rlo PRU 0.006 ± 0.0017

Right inflow resistance Rri PRU 0.01 ± 0.005

Right outflow resistance Rro PRU 0.003 ± 0.0015

Peripheral resistance Ra PRU 1.0 ± 0.3

Pulmonary venous resistance Rpv PRU 0.08 ± 0.0457

Arterial compliance Ca
mL

mmHg
1.6 ± 0.3

Venous compliance Cv
mL

mmHg
100 ± 15

Pulmonary venous compliance Cpv
mL

mmHg
8.4 ± 2.8

Pulmonary arterial compliance Cpa
mL

mmHg
4.3 ± 1.77

Distending blood volume DBV mL 1175 ± 138
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Appendix C

Peripheral Resistance Estimation

based on Patient Data

In simulating the patient data in Chapter 5, we made certain assumptions regarding how

peripheral resistance (Ra) changes based on the ABP patient data and based on recorded

changes in doses of Levophed. In this section, we use the Windkessel model [31, 32] of

arterial dynamics to estimate Ra using the patient ABP data, in an attempt to validate our

assumptions a posteriori.

C.1 Assumptions on Changes in Peripheral Resistance

Figure C-1 shows a time-series plot of the patient beat-to-beat averaged ABP data and of

the Levophed medication. Based on this information, we made the following assumptions

regarding changes in Ra:

• At 500s, we assumed Ra starts to drop as it is preceded by a recorded reduction in

Levophed dose, the effect of which is observed when the patient’s ABP drops soon

after. We continued to reduce Ra till 700s when ABP stopped to drop as rapidly as

before.

• As the patient’s ABP drops rapidly starting at 1120s, with a subsequent recorded
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Figure C-1: Beat-to-beat averaged patient ABP data (top panel)
and Levophed medication (bottom panel).

reduction in Levophed dose, we hypothesized a further drop in Ra starting at 1120s

and ending at 1500s. The discrepancy between the time ABP starts to drop and the

recorded time at which the Levophed dose changes can be attributed to a recording

artifact.

• An increase in ABP starting at 2200s and a subsequent increase in Levophed dose led

us to hypothesize an increase in Ra starting at 2200s . The time difference between

the Levophed dose change and the point at which ABP starts to increase can again be

attributed to a recording artifact.

C.2 Peripheral Resistance Estimation using the Wind-

kessel Model

The Windkessel model is a simple three-element circuit model of arterial dynamics [31,

32]. Figure C-2 shows the circuit analog of the Windkessel model. The current source,
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Figure C-2: Circuit analog of Windkessel model. Pa refers to arterial blood pressure.

which drives the circuit with impulses, represents the pumping heart, ejecting blood into the

circulation instantaneously. The resistor represents the peripheral resistance whereas the

capacitance models the arterial compliance (Ca).

Through the application of circuit theory, it can be shown that stroke-volume is pro-

portional to pulse pressure (PP ), with the constant of proportionality being the arterial

compliance. Pulse pressure is defined as the difference between systolic and diastolic ar-

terial pressures. In electrical circuit terms, ΔQ = Ca · ΔV , with ΔQ being analogous to

stroke-volume and ΔV being analogous to pulse pressure.

The blood pressure data can therefore be used to calculate Ra in the following manner:

Ra = 60 · ABP

PP ∗ HR ∗ Ca

where ABP refers to beat-to-beat averaged ABP and HR represents the heart rate. A

quantity proportional to Ra can be obtained, as Ca is constant in the Windkessel model:

Ra ∼ 60 · ABP

PP ∗ HR

This quantity can be used as a relative estimate of Ra, which we shall refer to as the

Windkessel estimate.

Figure C-3 shows a plot of the Windkessel Ra estimate using the patient ABP data. The

plots of the patient ABP data and Levophed medication are also shown. The Windkessel
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Figure C-3: Windkessel estimate of Ra (top panel), beat-to-beat
averaged patient ABP data (middle panel), and Levophed medica-
tion (bottom panel).

Ra estimate behaves exactly opposite to our intuition. Whenever ABP decreases, along with

the Levophed dose, the Windkessel estimate of Ra increases and vice-versa. One possible

explanation for this behavior is the intervention by the control system. Whenever ABP de-

creases, the control system intervenes to increase ABP and therefore increases Ra. However,

it must also be taken into account that the derived estimate of Ra assumed a constant Ca,

whereas physiologically, Ca exhibits a nonlinear volume-pressure relationship [33].

Based on an arctangent model of aortic mechanics, Langewouters and co-workers [34]

proposed a method of calculating Ca that incorporates the nonlinear behavior:

Ca =
Amax/πP1

1 +
(

Pa−P0

P1

)2 (C.1)

Here Pa refers to arterial blood pressure; Amax, P0, and P1 are constants denoting the max-

imum thoracic aortic cross-sectional area, inflection point of pressure, and width-parameter

respectively, and are derived from aortic pressure-area relationships. Through population
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Updated Windkessel estimate of Ra incorporating the nonlinearity in Ca
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Figure C-4: Windkessel estimate of Ra incorporating the nonlin-
earity in Ca (top panel), beat-to-beat averaged patient ABP data
(middle panel) and Levophed medication (bottom panel).

studies, Wesseling and co-workers [35] determined the values of these constants based on

gender and age. We applied Equation C.1 to our patient data to obtain a Ca that varies

nonlinearly with ABP1. The calculated Ca was then incorporated into the Windkessel model

to obtain the updated Windkessel Ra estimate that takes the Ca nonlinearity into account.

Figure C-4 shows the updated Windkessel Ra estimate. The updated estimate overlaps

to some degree with our assumptions. The decrease in Ra that we assumed from 500− 700s

is present in the updated estimate, and so is the increase in Ra that we assumed from 2200s

onwards. However, the starting points of these changes are not aligned with our assumptions.

We hypothesized a decrease in Ra from 500s, whereas in the updated estimate Ra decreases

from the start. A similar starting-point mismatch is observed for the increase in Ra that we

assumed started at 2200s. Moreover, the updated estimate shows an increase in Ra during

the times of bolus administration. We are not quite sure why the estimate is showing an

1The calculation of the nonlinear Ca was provided to us courtesy James Sun, who also introduced us to
the work of Langewouters and Wesseling [34, 35].
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increase in Ra in that region. Ignoring the region of bolus administration and the subsequent

recorded drop in Levophed dose, and assuming long time-lags exist to record the changes

in medication, we can somewhat correlate the changes in the updated Ra estimate to the

Levophed medication. The decrease in the estimated Ra from the start can be caused by the

decrease in Levophed dose which is recorded at approximately 500s. Similarly, the increase

in Ra which starts at approximately 1300s can be related to the increase in Levophed dose

which is recorded at approximately 2250s. However, this lag of more than 15 minutes is

slightly long to be attributed to a recording artifact, but it is possible.

C.3 Concluding Remarks

In this section, we used the Windkessel model to estimate Ra for the patient case we con-

sidered in Chapter 5. The idea was to use a simple arterial side model to estimate Ra using

actual patient data, in an attempt to validate the assumptions we made when simulating

the patient. The Windkessel Ra estimate turned out to exhibit exactly the opposite behav-

ior to our assumptions. However, the Windkessel estimate itself is not very reliable as it

makes several simplifying assumptions including instantaneous ejection and a constant Ca.

To incorporate the nonlinear Ca into the Windkessel estimate, we used a method proposed

by Langewouters and co-workers [34]. The updated Ra estimate had some overlap with our

assumptions and was seen to be somewhat correlated to the changes in Levophed medication.

However, the updated estimate did exhibit some inexplicable behavior in the region of bolus

administration.

The analysis performed in this section serves to show the difficulty in estimating Ra using

only ABP data. Given only ABP data, we are limited to using simple arterial side models

that make several simplifying assumptions and ignore important components with which the

arterial side interacts, such as the venous compartment. Thus, such models are not very

representative of the underlying physiology, and can lead to misleading results. One simple

solution to this problem is increased use of cardiac output recordings in the ICU setting,

which can be used to calculate Ra.
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