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Abstract— Bayesian Networks provide a flexible way of in-
corporating different types of information into a single proba-
bilistic model. In a medical setting, one can use these networks
to create a patient model that incorporates lab test results,
clinician observations, vital signs, and other forms of patient
data. In this paper, we explore a simple Bayesian Network
model of the cardiovascular system and evaluate its ability to
predict unobservable variables using both real and simulated
patient data.

I. INTRODUCTION

Physicians have access to many types of information when
treating patients. For example, they can examine real-time
waveform data like blood pressure and ECG recordings;
data trends like time-averaged heart rate; intermittent mea-
surements like temperature and lab results; and qualitative
observations like reported dizziness, nausea, or skin color.
Within the Intensive Care Unit (ICU), physicians attempt to
consider as much of the relevant information as possible,
but the astronomically large amounts of data collected make
it impossible to consider all available information within a
reasonable amount of time. In addition, not all of the data
collected is helpful in its raw form, but sufficient statistics
taken from such data might help physicians gain a more
thorough understanding of recent changes in the patient’s
state. Because of this, we are exploring ways to integrate
different types of patient data into more synthesized forms
(see http://mimic.mit.edu/).

A. Cardiovascular Models

Models provide one way of synthesizing multiple ob-
servations of the same complex system. Many traditional
cardiovascular models consist of sets of differential equations
derived from physiology using mechanical models of the
heart and blood vessels. These models vary in both the levels
of complexity and levels of temporal resolution.

Such models pose a number of problems when applied
in an ICU setting. Only a limited number of measured
signals are consistently available in the ICU, so one cannot
accurately estimate more than a small subset of physiological
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model parameters using the available data [2]. In addition,
quantitative models of this sort fail to use all available
information, as they usually do not incorporate diagnos-
tic information, information about medications, qualitative
observations, intermittent data, and observations from the
clinical staff.

In order to integrate both qualitative and quantitative
patient information into a single model, we are exploring
ways to synthesize Bayesian Network models with traditional
physiological ones. Bayesian Networks can incorporate non-
numeric, discrete, and continuous information into the same
model, while providing a stochastic framework for estimating
unobservable variables, even when incoming patient data
becomes unreliable.

B. Bayesian Networks in Medicine

Within the medical field, Bayesian Networks have been
used for diagnosis, prognosis, and treatment selection [3],
[4], [6]. For instance, the Heart Disease Program [4] uses
a several-hundred-node Bayesian Network to diagnose pa-
tients. While useful, this extremely large network is some-
what difficult to understand and maintain. Because of this,
we are working to develop simpler models whose parameters
can be learned and updated from patient data.

Berzuini et al. [5] proposed a methodology for using
Bayesian Networks to monitor patients and aid in drug
therapy. Their system incorporated both general population
data and incoming patient data to provide patient-specific
models.

VentPlan [6], a Ventilator Therapy Planner, uses a rela-
tively simple Bayesian Network and a quantitative physio-
logical model of the pulmonary system to monitor patients
and suggest ventilation settings. We aim to develop a similar
Bayesian Network model for the cardiovascular system and
use it to estimate unavailable information about internal
patient state.

II. BAYESIAN NETWORKS

Bayesian Networks represent joint probability distributions
using directed acyclic graphs [7]. The network nodes rep-
resent random variables, while the network arrows, which
point from parent nodes to child nodes, indicate condi-
tional dependencies between nodes. A given graph structure
represents a class of probability distributions that factors
in a particular way and thus shares a set of conditional
independencies. Within a Bayesian Network, the joint node
distribution equals the product of the conditional distributions
for each node, given the node’s parents.
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Fig. 1. Simple Bayesian Network model of the cardiovascular system.

The network in Fig. 1 describes a probabilistic relationship
between the random variables stroke volume (SV), mean ar-
terial blood pressure (BP), total peripheral resistance (TPR),
cardiac output (CO), and heart rate (HR) such that

P (SV, BP, TPR, CO, HR) =

P (TPR)P (HR)P (SV)P (BP|TPR, CO)P (CO|HR, SV).
(1)

This model reflects the relationships between cardiac output
and the other random variables, namely that CO = HR×SV
and BP = TPR × CO.

Bayesian Networks imply a set of conditional dependen-
cies and independencies based on the fact that each node
is conditionally independent of its non-descendants, given
its parents. Within Fig. 1, TPR and CO are conditionally
dependent, given BP, and BP is conditionally independent
of both HR and SV, given CO. Intuitively, this means that
if BP is fixed, knowing the value of TPR yields additional
information about CO. Similarly, if CO is fixed, knowing BP
yields no additional information about HR or SV.

Efficient algorithms exist for calculating the a posteriori
distribution of unknown variables on a Bayesian Network,
given available information, so we can use these networks
to obtain estimates of unknown variables, given known data.

In working with cardiovascular models, we aim to create
simple models that capture necessary dynamics without
adding extraneous model parameters that are difficult to
estimate, and we explore how accurately such models capture
patient dynamics. Each random variable in Fig. 1 is modeled
using a discrete probability mass function (PMF) which
assigns probabilities to five levels for each random variable
values. PMF parameters are modeled using Dirichlet priors
[7]. For the preliminary work presented in this paper, we
tested the network’s ability to estimate patient parameters,
first when presented with simulated patient data and then
when presented with real patient data.
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Fig. 2. The simple pulsatile cardiovascular model uses a 3-way switch
which allows for simpler analysis of the circuit. The model has a single
ventricular compartment (R1, Ch(t), R2), an arterial compartment (Ca,
R3), a venous compartment (Cv ), an interstitial fluid compartment (Ci,
Ri), and a blood infusion or hemorrhage source Qv .

III. SIMULATED PATIENT DATA

A. Methods

1) Data Generation: In this section, the data used to train
and test the Bayesian Network was obtained by simulation
of the simple pulsatile cardiovascular model introduced as in
[1]. Fig. 2 illustrates the circuit representation for the model.
Ca is the arterial compliance, Cv is the venous compliance,
Ch(t) is the time-varying compliance of a single ventricular
chamber, R1 is the inflow resistance to the ventricle, R2

is the outflow resistance from the ventricle, and R3 is the
total peripheral resistance. The pressure Vh is the ventricular
pressure, Vv is the central venous pressure, and Va is the
arterial blood pressure. The ventricular volume is Qh. In
addition, the model contains an interstitial fluid compartment
with compliance Ci and resistance Ri, and a blood infusion
or hemorrhage source Qv.

The elastance function Eh(t)=1/Ch(t) for the ventricle is
represented as a piecewise linear function [1] given by:

Eh(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3(Es−Ed)
T t + Ed for 0 ≤ t ≤ T

3

6(Es−Ed)
T (T

3 − t) + Es for T
3 ≤ t ≤ T

2

Ed for T
2 ≤ t ≤ T

(2)
where T is the duration of the cardiac cycle, Es is the
end-systolic elastance, and Ed (� Es) is the end-diastolic
elastance. State equations for this model can be derived
as in [1], but with an additional equation representing the
interstitial compartment dynamics. The data was created
using the same nominal parameters as in [1], combined
with additional nominal parameters of Ci = 300 ml

mmHg ,

Ri = 1 mmHg
(ml/sec) , and Qv = 0 ml

sec .
To generate testing and training data, we used the model to

run twenty 500-second-long simulations during which one or
more patient parameters deviated from their nominal values.
These deviations are described in Table I. The cardiovascular
responses, sampled at a rate of 10 Hz, were used to compute
the beat-to-beat averaged values of the arterial and venous
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TABLE I

DESCRIPTION OF THE TRAINING DATA SEGMENTS.

Data Segment Description of parameter changes
1 Nominal Parameters
2 TPR increases from 1 to 5 PRU = mmHg/(ml/s)
3 Qv=4 ml/s
4 Qv=-4 ml/s
5 TPR decreases from 1 to 0.3 PRU
6 Ca decreases from 2 to 0.6 ml/mmHg
7 HR is stepped up from 60 to 300 bpm
8 HR is stepped down from 60 to 30 bpm
9 Cv decreases from 50 to 20 ml/mmHg
10 R2 increases from 0.01 to 0.5 PRU
11 R2 decreases from 0.01 to 0.001 PRU
12 Es increases from 2.5 to 5 mmHg/ml
13 Ed decreases from 0.1 to 0.05 mmHg/ml
14 Es decreases from 2.5 to 1 mmHg/ml
15 Ed increases from 0.1 o 0.2 mmHg/ml
16 Qv=4 ml/s and TPR increases from 1 to 3 PRU
17 Qv=-4 ml/s and TPR decreases from 1 to 0.5 PRU
18 HR is stepped up from 60 to 300 bpm

TPR decreases from 1 to 0.5 PRU
19 HR is stepped down from 60 to 30 bpm

TPR decreases from 1 to 3 PRU
20 HR is stepped up from 60 to 300 bpm

TPR increases from 1 to 3 PRU

blood pressures, as well as the average flow across the
total peripheral resistance. These variables were then used
to calculate cardiac output. Using heart rate (HR= 60

T ) and
CO, we calculated SV. These five variables, HR, SV, CO, BP,
and TPR, were saved for each of the twenty simulations. The
first ten samples of each simulation were discarded to remove
unrealistic transient simulation effects, and the resulting data
was then used to train and test the Bayesian Network.

2) Training and Test Sets: The data was first segmented
into ten second intervals. Half of the intervals were chosen
uniformly at random to be included in the training set, while
the remaining intervals were placed in the test set. This
random selection process was repeated fifty times to obtain
fifty different training and test sets. This procedure was
repeated for interval sizes of 100 seconds and 250 seconds.

Data was then quantized by placing values into five equally
sized bins that cover an acceptable dynamic range for each
variable of interest. HR was quantized to values of 25, 75,
125, 175, and 225 beats per minute (bpm).

3) Network Training: The network parameters are initial-
ized using likelihood-equivalent uniform Dirichlet distribu-
tions [7]. The parameters of the Dirichlet priors are set to
values less than one so that the resulting uniform prior is
quickly overridden by incoming training data. The network
training algorithm essentially computes histograms of the
number of times that certain network variables take a given
set of values simultaneously. These histogram counts are
added to the parameters of the Dirichlet priors so that value
combinations not encountered in the training data set are still
assigned a small non-zero probability. The histogram counts
summed with the prior parameters are normalized to create
the new conditional probability distributions for each node.
The algorithms can be found at http://bnt.sourceforge.net/.

We first trained a network on the entire data set to obtain
a baseline for comparison. Estimates obtained from this

network reveal the optimal estimates for our data set. We
then trained additional networks on each of the randomly
segmented training sets described above.

4) Testing the Trained Network: We provided each trained
network with quantized BP and HR values from the test set
and used the network to obtain estimates of CO, TPR, and
SV, given these values. We computed both quantized mini-
mum mean square error (MMSE) estimates and maximum a
posteriori (MAP) estimates as follows:

MMSE(X|BP, HR) = {E[Xq|BPq, HRq]}q

= {ΣxqP (xq |BPq, HRq)}q, (3)

and

MAP (X|BP, HR) = argmax
xq

{P (xq|BPq, HRq)}, (4)

where X is either CO, TPR, or SV; the subscript q indicates
that the corresponding value is quantized; and xq ranges over
the set of quantized values taken by the random variable X.
We then mapped the quantized estimates to their correspond-
ing bins and compared the binned estimates with the actual
binned values from the corresponding test set.

5) Error Analysis: We examined two types of error rates,
the absolute error rate, i.e., the number of errors divided by
the total number of samples, and the root mean square error.
Any time an estimate did not fall in the same bin as the
actual value, the estimate was counted as an error. The bin
numbers were used to calculate the root mean square error,
so that the error rate for each variable was normalized to
the same scale. Bins were used to calculate the errors since
identifying the relative range of the variable of interest is
normally acceptable in a clinical setting.

B. Results

Error rates and standard deviations increased as the length
of the training segment increased, since data combinations
not seen in the training sets were more likely to appear in
the test sets when the segment size was large. Analysis is
presented for the 250-second segment case since those error
rates are the most conservative.

Error rates for both types of estimators were comparable.
As seen in Table II, the MAP estimator provided a slightly
smaller absolute error rate, and the MMSE estimator pro-
vided a slightly smaller root mean square error, but these
differences were not significant. If left to random chance, the
expected absolute error rate would be approximately eighty
percent, so the Bayesian Network is performing far better
than random chance. The twenty-five to thirty-three percent
absolute error rates indicate that the estimate falls in the
correct bin more than two-thirds of the time. The small root
mean square errors indicate that when the estimate does not
fall in the same bin as the actual value, it tends to fall in a
nearby or adjacent bin.

Errors more frequently occur when a combination of
variable values appears in the test set but not the training
set. Fig. 3 shows how such occurrences affect the learned
conditional PMFs.
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TABLE II

A COMPARISON OF THE MEAN ERROR RATES AND STANDARD

DEVIATIONS FOR THE DATA SETS WITH 250 SECOND SEGMENTS

Mean Absolute Mean Root Mean
Error Rates (STD) Square Error (STD)

Estimator MMSE MAP MMSE MAP

Resistance 0.33 (0.06) 0.31 (0.06) 0.73 (0.14) 0.77 (0.17)
Cardiac
Output 0.30 (0.07) 0.27 (0.07) 0.72 (0.16) 0.78 (0.23)
Stroke
Volume 0.26 (0.08) 0.29 (0.06) 0.68 (0.16) 0.71 (0.14)
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Fig. 3. Conditional probability mass functions (PMFs) for BP, given CO
and TPR. Each plot shows the conditional PMF of BP for a particular set
of CO and TPR values. Each set of bars of a given shading displays the
PMF obtained when the network is trained using a different training set.
The left-most bar in each group is obtained by training on the entire data
set, while the other bars are obtained using partial training sets. When a
particular BP-CO-TPR value combination is not found in a training set, the
PMF remains uniform. The plot on the bottom right displays such a case.

IV. REAL PATIENT DATA

A. Methods

1) Data: As a preliminary test of the network’s ability
to track real patient data, we presented the network with
data from a single ICU patient record from the MIMIC II
database [8]. Beat-to-beat estimates of cardiac output were
calculated from the patient data using Liljestrand’s method
[9] with the actual thermodilution cardiac output measure-
ments for calibration. Beat-to-beat averaged BP waveforms
were obtained from the 125-Hz blood pressure waveforms.
We used the beat-to-beat BP, HR, and CO values to calculate
beat-to-beat values for SV and TPR using SV = CO

HR and
TPR = BP

CO . All of the waveforms were then median filtered
to reduce noise. The resulting waveforms were taken as the
actual values of HR, BP, CO, TPR, and SV when training
and testing the Bayesian network. Before testing and training,
the data was quantized as in Sec. III-A.2. The resulting
waveforms are pictured in Fig. 4.
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Fig. 4. Patient data used to train the network. Original waveforms are shown
in blue, quantized waveforms are shown in green, and the quantization
thresholds are shown in grey.

2) Network Training: Training on one data set and testing
on another resulted in unsatisfactory performance, so we
used a sequential training method that allowed the network
to continually update its probability distributions based on
incoming patient data. We initialized the Dirichlet distribu-
tions as in Sec. III-A.3. The network then used sliding data
windows of various sizes to set its probability distributions to
normalized histograms of data from the most recent relevant
5000 beats plus the initialized Dirichlet parameters. The
probability distributions for HR, SV, and TPR, Bayesian
Network variables with no parents, depended on the most
recent 5000 heart beats, approximately fifty-five minutes of
data. Distributions for CO and BP, nodes with two parents,
depended on the last 5000 heart beats for which the parent
random variables took a particular set of values. For example,
P (CO|HRb = 1, SVb = 1), where HRb and SVb represent
the bin numbers for HR and SV, respectively! , was computed
from the last thousand beats for which HRb = 1 and
SVb = 1. Data sets of this sort frequently extended further
back in time than the most recent 5000 heart beats.

3) Testing the Network: During testing, the sequentially
trained network uses the probability distribution learned from
beats 0 through t to calculate its (t + 1)st estimates. After
updating its probability distributions based on information
from beat t, the network receives HR and BP information
from beat t + 1 and uses this information to estimate the
CO, SV, and TPR associated with the (t + 1)st beat.

4) Error Analysis: We compare the binned single beat-
predictions with the binned actual values as in Sec. III-A.5.

B. Results

The MMSE estimates for TPR, CO, and SV are shown in
Figure 5. Since the MMSE and MAP results were similar,
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Fig. 5. Estimates when the Bayesian Network is sequentially trained with a
training memory size of 5000 beats and tested on patient data. The original
waveform is in blue, the quantized waveform in green, and the MMSE
estimates in red.

we focused on the MMSE estimates. In general, the estimate
tracked the original waveforms. When the data remained
within the same set of quantization bins for long enough,
however, the estimates settled to the corresponding quantized
values, because the probability distribution windows no
longer retained data points that took other values.

The sudden increase in SV at minute 1200 shows how
the network responds to changes in the estimated variables
that are not accompanied by changes in HR or BP. Without
some type of indication from either HR or BP, the network
cannot predict a sudden change in SV. Thus, the network
adapts to the change in SV in a delayed fashion as the
network updates its probability distributions based upon the
new SV data. Because of the change in SV after minute
1200, the network successfully tracks a slight increase in the
CO waveform, even though the quantized CO, HR, BP, and
TPR values do not change. Here, the network relies on the
changing probabilistic information about SV to change the
CO estimate.

Within this data set, changes in SV and CO often occur
without corresponding changes in BP and HR. Thus for this
data set, the network frequently relies on information that
the probability distributions extract from recent SV and CO
combinations to estimate future CO and SV values.

The binned estimates for TPR equaled the actual binned
value 99.7% of the time. The binned estimates for CO and
SV were accurate 82% and 87.5% of the time respectively.
Lower error rates were obtained by using smaller training
window sizes, but the resulting estimates simply moved
more quickly from one quantized value to another without
improving the network’s ability to approximate the actual
waveform.

V. CONCLUSIONS AND FUTURE WORK

The network performance is promising. With proper train-
ing data, this model may provide satisfactory estimates of
CO, SV, and TPR based on the BP and HR information
generally available in the ICU. Future work will explore
how to use both relevant population data and current patient
data to evaluate the Bayesian Network probability distribu-
tions and to perform estimation. Procedures that incorporate
general population data should be careful to rely only on
population data relevant to the current patient, because using
irrelevant data seems to hurt network performance. Future
work should analyze how general population data might
be used to improve network performance and under what
conditions the use of general population data will yield
unsatisfactory results. In addition, such work might explore
how to incorporate additional patient information like lab
results and intermittently available data into the Bayesian
Network to aid the estimation process.

We also plan to focus on improving the network’s ability to
predict abrupt changes in the patient data. One can easily use
recent data to approximate incoming patient data when the
patient variables remain constant, but when a patient variable
changes abruptly, we would like to use the Bayesian Network
to combine patient history and relevant general population
data to predict the patient’s response to the sudden change.
We are also exploring whether dynamic Bayesian Networks
[7] might help capture such time correlations.
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