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Abstract Previous work has been demonstrated that 
 tracking features describing the dynamic and time-varying 
patterns in brain monitoring signals provide additional pre-
dictive information beyond that derived from static features 
based on snapshot measurements. To achieve more accurate 
predictions of outcomes of patients with traumatic brain 
injury (TBI), we proposed a statistical framework to extract 
dynamic features from brain monitoring signals based on the 
framework of Gaussian processes (GPs). GPs provide an 
explicit probabilistic, nonparametric Bayesian approach to 
metric regression problems. This not only provides probabi-
listic predictions, but also gives the ability to cope with miss-
ing data and infer model parameters such as those that 
control the function’s shape, noise level and dynamics of the 
signal. Through experimental evaluation, we have demon-
strated that dynamic features extracted from GPs provide 
additional predictive information in addition to the features 
based on the pressure reactivity index (PRx). Significant 
improvements in patient outcome prediction were achieved 

by combining GP-based and PRx-based dynamic features. In 
particular, compared with the a baseline PRx-based model, 
the combined model achieved over 30 % improvement in 
prediction accuracy and sensitivity and over 20 % improve-
ment in specificity and the area under the receiver operating 
characteristic curve.

Keywords Gaussian process • Intracranial pressure  
• Dynamic features and outcome prediction

 Introduction

 Background

Traumatic brain injury (TBI) is a serious health hazard 
worldwide [9, 26], not only because of the high incidence of 
death it causes (22 % of all TBI cases result in death), but 
also because of the large number of individuals who are left 
with some form of disability [14]. In Singapore, TBI is the 
number 1 killer of young male adults aged younger than 40, 
and it accounts for one-half of trauma-related deaths [19]. In 
Europe, around 1 million people suffer from TBI annually; 
in the United States, it is 1.5 million.

The recovery rate and long-term functional outcome 
of a patient with TBI are determined by the critical-care 
management of the patient [18]. In particular, the most 
crucial period is in the neurointensive care unit (NICU) 
immediately following the head injury [24, 28]. To pre-
vent secondary insults to patients with TBI, continuous 
brain monitoring has become the gold standard in most 
NICUs around the globe [1, 25]. The contemporary mul-
timodal brain monitoring in NICUs includes the monitor-
ing of intracranial pressure (ICP), mean arterial pressure 
(MAP), brain tissue oxygenation (PbtO2), and brain tem-
perature [27, 29].
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 Problem

Predicting outcomes in patients with TBI has been a major 
research questions. Prediction methods have been proposed 
based on the values of ICP [7, 8, 20, 21], the variability of 
ICP [3, 4], the high-resolution morphologies in ICP [15, 16] 
and the combination of ICP and other physiological signals 
[3, 13]. We have learned that physiological signals contain 
complex dynamical structures that reveal the state of the 
underlying control and regulatory systems [6, 17]. Tracking 
the dynamic features that describe the time-variant dynamic 
changes and patterns in physiological signals can provide 
additional predictive information beyond that derived from 
static features based on snapshot measurements.

The pressure reactivity index (PRx) [13] is one of the 
most commonly used dynamic features. PRx is a continu-
ous index that quantifies cerebrovascular reactivity and 
approximates global cerebral autoregulatory reserve by 
observing the response to slow spontaneous changes in 
MAP [3], i.e., PRx captures the continuous interactions 
between MAP and ICP. PRx ranges between 1 and −1. 
A PRx value close to 0 indicates preserved autoregula-
tion, whereas a PRx value close to 1 indicates impaired 
autoregulation. Abnormal PRx values were found to be 
associated with poor outcome for patients with TBI [3]. 
However, PRx suffers from some limitations. First, PRx 
requires regular and continuous sampling of the signals. In 
reality, however, missing values are commonly observed 
in real brain monitoring signals (as shown in Fig. 1). 
Second, as PRx is defined based on Pearson’s  correlation, 

it is very sensitive to noise and outliers in signals. Similar 
limitations are also observed in most of the previously 
proposed dynamic features.

 Contributions

To address the limitations of PRx and other proposed dynamic 
features, we propose a probabilistic framework to extract 
dynamic features from brain monitoring signals based on the 
concept of a Gaussian process (GP). GP has been a popular 
probabilistic model for time series [23] and continuous sensor 
data modeling [5]. The GP model is able to summarize the 
dynamic patterns and structures in time- series signals into a 
small set of hyperparameters. Unlike other dynamic feature 
extraction methods, the GP model not only provides probabi-
listic predictions (i.e., each data point is estimated as a distri-
bution rather than as a fixed point), but also gives the ability to 
infer model parameters such as those that control the function 
shape, noise level, and dynamics of the signal. This makes GP 
robust against noise and outliers, and it also allows us to calcu-
late a confidence interval to quantify the statistical uncertainty 
of the underlying estimation. Moreover, the GP model does 
not require evenly sampled data, which makes it an ideal 
choice for brain monitoring signals with missing values. 
Through experimental evaluation, we have demonstrated that 
dynamic features extracted based on GP provide additional 
predictive information in addition to PRx. Significant improve-
ments in patient outcome prediction were achieved by com-
bining GP-based and PRx-based dynamic features.
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Fig. 1 An example of intracranial pressure (ICP) signal with missing values
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 Materials and Methods

 Patients and Monitoring

This analytical study was conducted using the monitoring 
data of TBI patients who were admitted to the neurocritical 
care unit of a tertiary hospital between January 2009 and 
December 2010. Thirty-five patients who underwent inva-
sive monitoring of ICP and MAP for more than 24 consecu-
tive hours were selected for the study. After informed consent 
was obtained, intraparenchymal probes were inserted based 
on the preoperative CT findings. ICP was continuously mon-
itored using a fiber-optic intraparenchymal gauge (Codman 
and Shurtleff, Taynham, MA, USA). MAP was measured 
through an arterial line from the radial artery using a stan-
dard pressure monitoring kit (Biosensors International Pte. 
Ltd., Hillegom, Netherlands). The continuously monitored
physiological readings were sampled and recorded every 10 
s using ICM+ software [12]. As can been seen in Fig. 1, 
because both the signals were recorded from the actual clini-
cal environment, the signals were inevitably contaminated 
by artifacts and missing values. All patients underwent multi- 
modality monitoring with continuous recording of clinical 
data on a Hewlett-Packard Carevue System.

Patients were managed based on a protocol incorporating 
the guidelines for the management of severe TBI [3]. The 
ICP of patients was optimized based on an incremental regi-
men to maintain ICP <20 mmHg and CPP > 60 mmHg. First- 
tier ICP control treatment included elevation of the bed to 
30°, sedation with propofol (2–10 mg/kg/h), and adequate 
analgesia (intravenous morphine 1–5 mg/h). Boluses of 
20 % mannitol (2 mg/kg up to a plasma osmolarity of 320 
mosmoI/L) were administered, if there was a sudden increase
in ICP. Second-tier measures then included paralysis, cool-
ing of the core body temperature to 36 °C and institution of 
a barbiturate coma, which is achieved with intravenous thio-
pentone 250 mg boluses of over 10–20 min (up to a total 
dose of 500–1,000 mg), with a maintenance dose of 125–
500 mg/h titrated to ICP control or to maintain burst suppres-
sion on electroencephalography (EEG). Surgical 
decompression was also used, when ICP could not be con-
trolled with second-tier measures.

 Patient Outcome

On discharge from the NICU, patients were divided into five 
groups based on their outcome. Among the 35 patients, 13 
(36 %) were dead, 7 (20 %) were in a vegetative state, 5 
(14 %) suffered from severe disability, 3 (9 %) suffered from 
mild disability, and 7 (20 %) achieved good recovery. For 

this study, we grouped the patients into two categories. The 
20 patients who were dead or in a vegetative state were 
grouped together as non-survivors (with a vegetative state), 
and the 15 patients who suffered severe or mild disabilities 
or who achieved good recovery were grouped together as the 
survivors. As a result, we had a quite a balanced breakdown 
of 56 and 44 % of patients respectively.

 Extraction of Dynamic Features from ICP 
and MAP Signals: A Gaussian Process 
Approach

We propose a method that uses the GP framework [22] to 
extract dynamic features from ICP and MAP signals. These 
features were used to improve the outcome prediction of TBI 
patients.

 An Introduction to Gaussian Processes
The GP framework is a nonparametric Bayesian regression 
tool that has been used in several machine-learning problems 
[22]. Compared with other regression techniques, such as 
support vector regression, GP-based models have the advan-
tage that prior knowledge of the functional behavior (such as 
periodicity or smoothness) can easily be integrated. In this 
section, we provide a brief introduction to GP models.

Let D X Y i n= ( ) = …{ | , , }i i, 1  be our data set of observa-
tions composed of input–output pairs, with X Yi i, ∈�.  We 
consider the regression model y f= ( )+x ε,  which expresses 
a dependent variable y in terms of an independent variable x, 
via a latent function, and a noise term. The function can be 
interpreted as being a probability distribution over functions, 
such that

 
f x GP m x k x xM K( ) ~ ( ) ( )( );q q, , ’;  (1)

where m(x;θm) is the mean function of the distribution, 
which has hyperparameters θm, and k(x,x’;θk) is a covari-
ance function, which has hyperparameters θk and describes 
the coupling between two values (X and X ') of the inde-
pendent variable as a function of the (kernel) distance 
between them (the hyperparameters’ terms will be omitted 
in the following equations for simplicity). The nature of 
the GP is such that, conditional on observed data, 
 predictions can be made about the function values y* at  
any “test” input location x*  by computing the posterior 
 density p y x D* *| , ,( )  which is Gaussian,

 
p y x x y N y var y* * * *| , , ,( ) ~ [ ]( )  (2)

where the mean and variance are given as:

 
y m x k x x k x x y m x* * *= ( ) + ( ) ( ) - ( )( )-

, ,
1

 (3)
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The mean and covariance functions, m(x*) and k(x*,x), 
encode our prior knowledge regarding the structure and 
functional behavior of the time series that we wish to model. 
There is a large class of mean and covariance functions (as 
shown in Rasmussen and Williams [22]). In this study, 
although it did not fully describe the true phenomenon, we 
assumed, for the simplicity of discussion, that our observa-
tions of ICP and MAP were (independently) obtained from 
an underlying linear decay with an unknown additive con-
stant. Our mean function is hence described by

 
m x xa b M a b( ) = + = { }q q q q q. , ,  (5)

where θa and θb are the hyperparameters of the mean func-
tion. Intuitively, a corresponds to the additive constant (i.e., 
the overall mean of the signal), and b corresponds to the 
overall trend of the signal (see Fig. 1). For the covariance 
function, the most frequently used is the squared-exponential 
covariance function:
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where θc is the length-scale parameter that determines the 
typical timescale on which the function varies (i.e., it cor-
responds to how smooth the function is), and θd is the 
amplitude that determines the typical amplitude of devia-
tion from the mean (i.e., it is associated with the variance 
of the signal).

 Dynamic Feature Extraction With Gaussian 
Process
The framework described is traditionally used in regression 
problems, in which the underlying latent function (and con-
fidence level) of the data is obtained. In this work, we use 
the GP framework not only to perform regression on each 
one of the signals (ICP and MAP signals), but also to 
extract the corresponding hyperparameters of the GP mod-
els that are fitted to the data and use them as features in 
classification tasks.

One of the main advantages of the probabilistic GP 
framework is the ability to choose the hyperparameters 
and covariances directly from the training data used for 
regression. In our study, the selection of the priors for the 
hyperparameters of m() and k() has been performed using 
a grid-search optimizer by minimizing the negative log 
marginal likelihood with regard to the hyperparameters 
and noise level. The optimized hyperparameters of the 
mean and covariance functions contain information about 
the behavior of the physiological signals (such as the 
overall trend and variability of the data), and can then be 
used for classification tasks (see Fig. 2).

 Experimental Evaluation

In this study, we used the first 24 h of 10-s mean ICP and 
MAP signals from the study cohort. Both mean ICP and 
MAP signals were preprocessed using a 3-sigma filter to 
remove noise and artifactual data [11]. PRx was used as the 
baseline to demonstrate the value of the additional informa-
tion that can be captured with the dynamic features extracted 
based on the GP model. How the additional information can 
help to better predict TBI patients’ outcome was experimen-
tally evaluated. PRx was calculated as a moving (Pearson’s) 
correlation coefficient between the MAP and ICP signals 
averaged over 10 s with a 5-min moving time window (i.e., 
30 consecutive ICP and MAP data points) [13]. Additionally, 
we used the probabilistic GP framework described in the pre-
vious section to model both ICP and MAP signals and obtain 
the optimized features from the corresponding mean and 
covariance functions. We evaluated the ability of these 
dynamic features to provide additional information for dis-
criminating TBI patient outcomes.

To assess the performance of the proposed approach, 
three different outcome prediction models were built: the 
PRx-based model, the GP-based model, and the combined 
model. The features used in the PRx-based model included 
the mean and variance of PRx, the proportion of time that the 
PRx value is above the critical threshold of 0.2 and 0.35 as 
defined in [13], and the 25th, 50th, and 75th percentile values 
of mean ICP and MAP signals. The GP-based model used 
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Fig. 2 Dynamic feature extraction based on the Gaussian process (GP) 
model. A GP regression model is fitted to the data points (+), where the 
solid line refers to the fitted mean function and the 95 % confidence 
region is highlighted as shaded area. Dynamic features A and B corre-
spond to the constant and trend values of the mean function, and 
dynamic features C and D correspond to the length-scale (measure of 
roughness/smoothness) and magnitude (measure of variability) param-
eters of the covariance function
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the hyperparameters of the mean and covariance functions of 
the trained GP as the predictive features. As illustrated in 
Fig. 2, the hyperparameters of the GP model characterized 
the dynamic variations of ICP and MAP signals. The com-
bined model merged the features from both the PRx-based 
and the GP-based model. Logistic regression classification
was used to predict patients’ recovery outcomes using a 
“leave-one-out” approach, and the performance of the differ-
ent models was assessed using the predictor's accuracy, sen-
sitivity and specificity, and the area under the receiver 
operating characteristic curve (AUROC).

 Results and Discussion

 Experimental Results

Figure 3a, b shows a 2-h window of the ICP and MAP sig-
nals for one sample patient and the regression results of the 
estimated GP model. We can see that the GP model provided 
a good estimation of the underlying trends of the ICP and 

MAP signals. Moreover, the GP model was able to estimate 
the underlying signals even in the presence of missing values 
(e.g., between minute 65 and 95 in Fig. 3). On the other 
hand, we observed that, limited by its definition, PRx cannot 
be calculated for the period of missing values (Fig. 3c).

Table 1 compares the performance of the PRx-based 
model, the GP-based model, and the combined model. The 
performance of the three models was evaluated based on 
their accuracy, sensitivity, specificity, and AUROC. As previ-
ously mentioned, patients in the study were divided into the 
non-survivors (including vegetative state) and survivors. We 
arbitrarily define the non-survivors (including the vegetative 
state) group as the positive class and the survivors group as 
the negative class for performance evaluation. The accuracy 
is then defined as (TP + TN)/(TP + TN + FP + FN), the sensi-
tivity is defined as TP/(TP + FN), and specificity is TN/
(TN + FP), where TP means true positive, TN true negative, 
FP false positive, and FN false positive.

We observed that, compared with the PRx-based model, 
the GP-based model achieved 22 % improvement in accu-
racy, 28 % improvement in sensitivity, 4 % improvement in 
specificity, and 11 % improvement in AUROC. When we 
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Fig. 3 (a, b) Fitted GP regression model on ICP and mean arterial pressure (mAP), where the dashed lines indicate the fitted mean functions and the 95 % 
confidence regions are highlighted as the shaded areas. (c) Calculated pressure reactivity index (PRx) for the corresponding ICP and MAP signals
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combine features from both the PRx-based and GP-based 
models, we achieved further improvements in accuracy 
(30 % improvement), sensitivity (33 % improvement), and 
AUROC (21 % improvement), and we improved the specific-
ity significantly from 0.53 to 0.65 (equivalent to a 22 % 
increase). These results indicate that features from the GP 
model that describe the dynamics of the ICP and MAP sig-
nals offer predictive information on patients’ outcomes.

 Strengths and Limitations of GP

Through theoretical and experimental investigations, we 
observed the following strengths of the GP model. Distinct
from PRx or other dynamic feature extraction methods, the 
GP model estimates each data point of a signal as a distribu-
tion rather than as a fixed point. As a result, in addition to the 
point (mean) estimation, GP is able to provide a 95 % confi-
dence interval that statistically quantifies the underlying 
uncertainties of the estimation. This also makes the GP 
model extremely robust against noise, artifacts, and outliers 
that are frequently present in the signals. Moreover, the GP 
model does not require a regular sampling rate from the 
underlying time-series signal (i.e., it may be applied to time 
series that are unevenly sampled). This makes the GP model 
a good choice for brain monitoring signals with gaps of 
missing values. As shown in Fig. 3a, when a segment of data 
is missing, the GP model was able to provide a probabilistic 
estimation of the missing values with a mean expected value 
and the associated uncertainty of the estimation (the 95 % 
confidence interval region). In addition, the hyperparameters 
of the GP model are interpretable features that describe 
dynamic structures and patterns of the underlying signal. For 
example, in our study, the slope parameter of the mean func-
tion captures the low-frequency long-term trends in the ICP 
and MAP signals; the length–scale parameter of the covari-
ance function describes the “roughness” of the signals; the 
magnitude parameter of the covariance function measures 
the variability of the signals. Based on the hyperparameters 
of GP, the types of dynamic structures or patterns in the brain 
monitoring signals that are most predictive for the outcomes 
of TBI patients can be investigated. This is one of the future 

research directions we plan to pursue when more patient data 
have been collected.

The application of the GP model can be limited by its 
assumption of a Gaussian likelihood function for each data 
point. This assumption may not be true in some cases for the 
brain monitoring signals. Let us take the ICP signal as an
example. Depending on the patient’s physiological and
recovery status, the distribution of ICP values may not fol-
low a symmetrical distribution like the Gaussian. It may have 
a heavier tail on one side than on the other. In this case, to 
accommodate the heavier tail, the GP model produces a 
wider confidence interval region, indicating a higher level of 
estimation uncertainty. The GP model is also limited by the 
relatively high computational complexity required to infer its 
hyperparameters. The worst case computational complexity 
for the hyperparameter estimation is O(N3), where N is the 
number of data points in the signal. Therefore, as the number 
of data points, N, grows, effective parallel processing meth-
ods are required for GP model inference [2, 10]

 Conclusion

To achieve a more accurate prediction of the outcomes of 
TBI patients, we proposed to use the probabilistic Gaussian 
process framework to extract dynamic features from the 
brain monitoring signals. Compared with PRx and other 
dynamic features, the GP model has a number of advantages 
that were described throughout the paper. Through experi-
mental evaluation, we have demonstrated that features 
related to the dynamics of the physiological signals may be 
easily extracted from GP models and provide additional pre-
dictive information in addition to PRx-based features. 
Significant improvements in patient outcome prediction 
were achieved by combining GP-based and PRx-based 
dynamic features. Both our theoretical and experimental 
studies suggested that the GP framework has great potential 
as a probabilistic model to summarize dynamic features from 
brain monitoring signals for more accurate TBI patient out-
come prediction.

Future work will involve assessing the utility of the pro-
posed approach after including other physiological variables, 

Table 1 Comparison of the prediction performance of the pressure reactivity index (PRx)-based, Gaussian process (GP)-based, and combined 
models

Model Accuracy Sensitivity Specificity AUROC

PRx-based 0.57 0.6 0.53 0.63

GP-based 0.7 (↑22 %) 0.77 (↑28 %) 0.55 (↑4 %) 0.7 (↑11 %)

Combined 0.74 (↑30 %) 0.83 (↑33 %) 0.65 (↑22 %) 0.76 (↑21 %)

The performance improvement achieved by the GP-based and combined models in contrast to the PRx-based model is also presented
AUROC area under the receiver operating characteristic
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and extending the Gaussian process framework to include 
the dependency of the variables and track the coupling of 
ICP and MAP during the recovery of the patient in the NICU.
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