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Abstract

We describe a novel model-based approach to esti-

mate cardiac output (CO) and total peripheral resistance

(TPR) continuously from peripheral arterial blood pres-

sure (ABP) waveforms. Our method exploits the intra-beat

and inter-beat variability in ABP to estimate the lumped

time constant of a beat-to-beat averaged Windkessel model

of the arterial tree, from which we obtain an uncalibrated

estimate of CO. To estimate absolute CO, we determine the

lumped arterial compliance using calibration data, and

assuming either constant or state-dependent compliance.

We applied our method to a porcine data set in which

stroke volume was measured with an ultrasonic flowmeter.

We obtain root-mean-square normalized errors of 11–13%

across all pigs, lower than those obtained on the same data

set using various other estimation methods. The CO esti-

mates, and TPR estimates derived from them track intra-

venous drug infusions quite closely.

1. Introduction

Cardiac output (CO) is a key hemodynamic variable that

is commonly used to establish differential diagnoses, mon-

itor disease progression, and titrate therapy in many car-

diovascular conditions. The current clinical gold-standard

for measuring CO is intermittent thermodilution, a highly

invasive procedure in which a catheter is advanced to the

pulmonary artery, a bolus of cold saline is injected into the

circulation, and the blood’s temperature profile is observed

as a function of time. Due to its high degree of invasive-

ness, this procedure is usually reserved for only the sickest

of patients, and even in critical care its benefit is increas-

ingly questioned [1]. Rather than intermittently measur-

ing average cardiac output invasively via thermodilution,

many attempts have been made to estimate CO from the

arterial blood pressure (ABP) waveform [2, 3, 4, 5, 6, 7],

using models of the arterial system, one of the most basic

of which is the Windkessel model of the arterial tree [2]

(see Figure 1 and Section 2).

An entire class of algorithms is based on analyzing the

pressure pulse morphology in the context of Windkessel-
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Figure 1. Circuit representation for the Windkessel model.

like models [3, 4, 5, 8]. Each of these algorithms assumes

that the arterial tree behaves like a Windkessel on an intra-

cycle timescale; CO is estimated using morphological fea-

tures of each individual ABP wavelet (such as systolic,

mean, and diastolic ABP). More recently, Mukkamala and

co-workers [7, 9] estimated relative changes in cardiac out-

put from the inter-cycle (or beat-to-beat) variations of the

ABP waveform, using these to determine the impulse re-

sponse function of the Windkessel model and, from it, the

time constant of arterial outflow. Knowing the latter, the

authors determined proportional CO, from which absolute

CO can be obtained via calibration with a single or multi-

ple reference CO measurements.

Our own interest in estimating CO and TPR derives

from our work in the area of cycle-averaged models of

the cardiovascular system [10, 11], where again the focus

is on inter-cycle variation. By applying a cycle-averaging

operation to the Windkessel model, we will show how to

arrive at an estimation scheme that uses both intra- and

inter-cycle information to determine CO.

2. Methods

Windkessel model

The Windkessel model describes the basic morphology

of an arterial pressure pulse [2]. It lumps the distributed

resistive and capacitive properties of the entire arterial tree

into two elements, as seen in the electrical circuit analog in

Figure 1: a single resistor R, representing total peripheral

resistance (TPR), and a single capacitor C, representing

the aggregate elastic properties of all systemic arteries.

The differential equation representing the Windkessel
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circuit at time t is given by

C
dP (t)

dt
+

P (t)

R
= Q(t) (1)

where P (t) represents arterial blood pressure at the aortic

root at time t. This equation shows that the time constant

τ = RC governs the intra-cycle dynamics of the Wind-

kessel model. The same time constant also governs the

inter-cycle dynamics, as noted in [7, 10, 11].

The pumping action of the heart is represented by an im-

pulsive current source Q(t) that deposits a stroke volume

SVn into the arterial system during the nth cardiac cycle:

Q(t) =
∑

n

SVn · δ(t − tn) (2)

where tn is the onset time of the nth beat and δ(t) is the

unit Dirac impulse. It then follows by integrating (1) over

just the (infinitesimal) ejection phase that

SVn = C · PPn (3)

where PPn is the pulse pressure in the nth cardiac cycle,

given by PPn=SAPn−DAPn, with SAPn and DAPn being

respectively systolic and diastolic arterial pressure in that

cycle.

We define Tn to be the duration of the nth cardiac cycle,

i.e., the beat that begins at time tn and ends at time tn+1

(so Tn = tn+1 − tn). It follows that the average cardiac

output in the nth cycle is given by

COn =
SVn

Tn

= Cn

PPn

Tn

(4)

where the first equality is simply the definition and the sec-

ond follows on substituting from (3).

Beat-to-beat averaged model

Given pulse pressure, (4) can be used to estimate val-

ues of cardiac output. However, since the relation (3) is

based entirely on the essentially instantaneous ejection pe-

riod assumed in this model, the CO estimate obtained via

(4) does not take advantage of information from the re-

mainder of the cardiac cycle that could be harnessed to

provide a better-conditioned estimate. Specifically, the fact

that (1) interrelates the variables during the entire cardiac

cycle, and indeed from one cycle to the next, has not been

exploited in the development so far.

To better reflect intra-cycle and inter-cycle behavior, we

average (1) over the entire cardiac cycle rather than just the

ejection phase. Considering R and C to be constant within

each cardiac cycle, but allowing them to vary from cycle

to cycle, this averaging yields the following relation over

the nth cycle [11]:

Cn

∆Pn

Tn

+
Pn

Rn

= COn (5)

where

∆Pn = P (tn+1) − P (tn) (6)

is the the beat-to-beat pressure change at the onset times,

and

Pn =
1

Tn

∫

tn+1

tn

P (t)dt (7)

is the average ABP over the nth cycle. Note that (5) is a

natural discrete-time counterpart to (1), with the first and

second terms now representing average flow through the

capacitor and resistor, respectively, in the n-th cycle.

Combining (4) and (5), we obtain

∆Pn

Tn

+
Pn

τn

=
PPn

Tn

, (8)

where τn=RnCn is the only unknown.

Because determination of central PPn from peripheral

pressure waveforms is problematic due to wave reflections,

we use an expression presented in [6] to estimate PPn in

terms of the mean pressure Pn in the n-th cycle and DAPn:

PPn = α
(

Pn − DAPn

)

(9)

where α is a constant. Assuming a triangular pulse shape

yields α = 2, but our results for the CO estimate are not

overly sensitive to the precise value of α.

Estimation

Equation (8) can be used to estimate 1/τn from knowl-

edge of the remaining quantities. Specifically, using a data

window comprising an odd number of beats centered at n,

and assuming τn to be essentially constant over this win-

dow, we invoke (8) for each of the beats in the window

to obtain a set of linear equations in the single unknown

1/τn. The least-square-error solution of this set yields the

desired estimate. Repeating the process on a sliding win-

dow produces an estimate of 1/τn for every beat.

Cardiac output can now be estimated from (5), rewritten

below to show dependence on 1/τn:

COn = Cn

(

∆Pn

Tn

+
Pn

τn

)

. (10)

The conventional expression for COn neglects beat-to-beat

variability and therefore omits the term ∆Pn/Tn; it is thus

actually valid only in cyclic steady state, while (10) holds

more generally. The determination of Cn using calibration

information is discussed in the next subsection.

Total peripheral resistance is also an important cardio-

vascular variable. In the clinical setting, TPR is defined

as the ratio of mean arterial blood pressure to cardiac out-

put. However, taking into account beat-to-beat variability
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as in (10) and thereby accounting for transient flow into the

arterial compliance, yields the modified expression

Rn =
Pn

COn − Cn
∆Pn

Tn

. (11)

Calibration

To compute COn using (10) we first need to estimate the

compliance Cn by using it to calibrate CO against one or

more true or reference CO measurements. A natural cal-

ibration criterion is the root-mean-square-normalized er-

ror (RMSNE) at the calibration points. If the compliance

Cn is assumed to be a constant C, then it is straightfor-

ward to choose the C that minimizes the RMSNE [11].

Mukkamala [7] instead used a mean calibration, dividing

the mean of the true CO values by the mean of the esti-

mated CO values at those points.

Considerably better results can be obtained by using a

state-dependent model for Cn. A simple choice is to as-

sume an affine dependence of Cn on Pn:

Cn = γ1 + γ2 Pn . (12)

The calibration can be performed using a least-square-

error solution to a linear system of equations [11]. Other

parameterizations may also be used.

Dataset

We tested the algorithm outlined above on the porcine

dataset used by Mukkamala [7]. The data contains mea-

surements of ECG, radial arterial blood pressure (rABP),

femoral arterial blood pressure (fABP), and aortic flow

(AF), all sampled at 250 Hz with 16-bit amplitude reso-

lution. From these waveforms we derived mean, systolic,

and diastolic arterial blood pressures. True CO was calcu-

lated by averaging the AF waveform over each beat.

3. Results

Unless noted otherwise, the results reported below were

generated using a 100-point state-dependent calibration to

obtain Cn for each animal. This represents less than 1%
of each animal’s data record, though our results change

minimally if as few as 10 or as many as 1,000 points are

used to calibrate.

Table 1 summarizes the error obtained for each animal

using either the rABP or fABP waveforms to estimate CO.

Our results show mean RMSNEs of about 12%, which

is lower than the 15% reported in the literature as being

acceptable for clinical purposes [9]. Figure 2 shows the

true and estimated CO, HR, mean rABP, true and esti-

mated TPR, and drug infusions for Animal 1. The spikes

in the HR and R waveforms are a result of not filtering

Table 1. CO RMSNEs for each animal using 360-beat data

windows. Different window sizes yield similar errors.
Animal Number of RMSNE (%) RMSNE (%)

comparisons using rABP using fABP

1 14604 15.4 10.2
2 14404 10.6 9.4
3 12088 9.7 8.8
4 18155 11.1 –
5 14113 8.4 12.6
6 9370 15.8 19.5

Aggregate 82734 11.9 12.1
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Figure 2. True (TCO) and estimated (ECO) cardiac out-

put, HR, mean rABP, true and estimated TPR, and IV

drugs for animal 1.

Tn. Estimated CO and TPR track true CO and TPR very

well while all major hemodynamic variables are varied in-

dependently over a wide range. Furthermore, due to the

continuous nature of our CO and TPR estimates, we track

pharmacological interventions quite closely.

We compared our method to that of Mukkamala and sev-

eral Windkessel-based CO estimation methods. To do a

fair comparison, we used a mean calibration for all esti-

mates. The results of this analysis are shown in Table 2.

Overall, our method (even without the state-dependent cal-

ibration) and the methods proposed by Herd and Mukka-

mala produce essentially equivalent results, and they out-

perform the other methods tested. In data segments in

which beat-to-beat variability is significant, as reflected by
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Table 2. Mean RMSNEs for various CO estimates reported in the literature.

CO Estimation RMSNE (%) RMSNE (%)

Method COn = using rABP using fABP

Our Method (10) 13.5 15.2

Mukkamala [7] ARMA model 14.0 15.0

Herd [6] C · HRn ·

(

Pn − DAPn

)

14.0 15.9

Modified Mean Pressure C · HRn · Pn 18.6 20.0

Static Windkessel [8] C · HRn · (SAPn − DAPn) 21.1 18.8

Liljestrand and Zander [3] C · HRn ·

(

SAPn−DAPn

SAPn+DAPn

)

30.0 25.1

Mean Pressure scaled Pn 31.6 33.6

the ratio ∆Pn/PPn, our method does substantially better

than static pulse contour methods that solely analyze the

intra-beat pulse shape [11].

4. Conclusions

In this paper, we described a novel model-based method

for continuously estimating CO and TPR from peripheral

arterial blood pressure waveforms. The method combines

intra- and inter-beat information to obtain competitive es-

timates of CO and TPR. These estimates improve further

on exploiting a state-dependent compliance model.

We applied our method, and several others reported in

the literature, to porcine data in which reference CO mea-

surements were available on a beat-by-beat basis. The ag-

gregate estimation error of our CO estimates is among the

lowest of all the methods tested. CO and TPR estimates

tracked the animals’ expected hemodynamic responses to

intravenous drugs well.

We are currently refining our method and applying it to

additional animal and human data sets.
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