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Abstract

The 15th annual PhysioNet/CinC Challenge aims to en-
courage the exploration of robust methods for locating
heart beats in continuous long-term data from bedside
monitors and similar devices that record not only ECG
but usually other physiologic signals as well, including
pulsatile signals that directly reflect cardiac activity, and
other signals that may have few or no observable mark-
ers of heart beats. Our goal is to accelerate development
of open-source research tools that can reliably, efficiently,
and automatically analyze data such as that contained in
the MIMIC II Waveform Database, making use of all rele-
vant information.

Data for this Challenge are 10-minute (or occasionally
shorter) excerpts (“records”) of longer multi-parameter
recordings of human adults, including patients with a wide
range of problems as well as healthy volunteers. Each
record contains four to eight signals; the first is an ECG
signal in each case, but the others are a variety of simulta-
neously recorded physiologic signals that may be useful for
robust beat detection. We prepared and posted 100 train-
ing records, and retained 300 hidden test records for eval-
uation of Challenge entries. A total of 1,332 entries from
60 teams were processed during the challenge period.

1. Introduction

Robust continuous detection of heart beats from bedside
monitors plays a critical role in patient monitoring. Most
existing beat detectors are QRS detectors, operating only
on ECG, even though other sources of pulsatile activity,
such as arterial blood pressure, are frequently being mea-
sured at the same time (for example, in an ICU.) While the
ECG is available in many clinical and research settings, its
quality may vary considerably over time, and on occasion
the ECG signal may be missing entirely. An excellent QRS
detector is thus limited by availability and quality of the in-
coming ECG signal. It is not clear to what extent the exam-
ination of other physiological signals such as blood pres-
sure, electroencephalography (EEG), and respiration can

ECG ECG

BP BP
0 0

100 100

PAP PAP
0 0

25 25

ECG ECG

BP BP
0 0

100 100

PAP PAP
0 0

25 25

Figure 1. Two examples of records for which beat detection can be im-
proved by utilizing information beyond the ECG channels. In the first
case, the ECG contains pacemaker artifacts; in the second, the ECG is
too noisy for QRS complexes to be identifiable. In both cases, clean ar-
terial blood pressure (BP) and pulmonary arterial pressure (PAP) signals
are available.

help improve the detection of beats associated with heart
activity. For instance, in most subjects, the observed rela-
tionships between respiration and heart rate can be used to
model heart rate, and together with nearby context derived
from ECG or other cardiac signals, these models could pre-
dict beat locations from respiratory signals.

In the PhysioNet/CinC 2014 Challenge, participants
were given the task of writing an algorithm to examine an
arbitrary multi-channel recording (provided to the partici-
pant’s program in a standard format), and produce a series
of annotations indicating the likely locations of heartbeats
in the recording. The Challenge was divided into three
phases, as shown in Table 1, and each individual or team
was allowed to submit up to five entries for each phase.
The major difference between the three phases, from the
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participants’ point of view, was the number of records in
the test set: 100 records were included in Phase I, then 100
new records were added for each subsequent phase, for a
total of 300 records in Phase III. At the end of each phase,
the five best-scoring entries were announced, and their
code was published on PhysioNet, in an attempt to stimu-
late collaboration among the competitors. Entries that con-
tained proprietary or copyrighted software were disquali-
fied, and the corresponding files were removed from the
published versions. Two sample entries were provided to
competitors: one using a C API, and one using an Octave
API [1]. Both entries used the WFDB Software Package
application[2], ‘gqrs’, which processed only a single ECG
signal in order to estimate the beat locations.

Table 1. Phases of the PhysioNet/CinC 2014 Challenge.

Phase Period N records
Phase I January 7 - April 7 100
Phase II April 16 - June 22 200
Phase III June 23 - August 15 300

2. Challenge Data

The Challenge consisted of four data sets: a public train-
ing data set, and one hidden test set for each of the three
phases. The data sets contained signals at most 10 min-
utes in length (or occasionally shorter). The signals were
multi-parameter recordings of human adults, including pa-
tients with a wide range of problems as well as healthy
volunteers. Each signal record contained four to eight sig-
nals, the first of which was always an ECG signal. The
remaining signals could be any of a variety of simultane-
ously recorded physiologic signals that might be useful for
robust beat detection. The signals were digitized at rates
between 120 and 1000 Hz; in any given record, however,
all signals were sampled at the same, fixed frequency. Ta-
ble 3 shows the general statistics of the four data sets used
for the challenge. The signal acronyms are: blood pres-
sure (BP), arterial line (ART), pulmonary arterial pressure
(PAP), and respiration (Resp).

Table 2. Data set signal type distribution.
Data set N BP ART PAP Resp EEG
Training 100 100 0 0 100 100
Phase I 100 14 75 70 73 14
Phase II 200 23 137 126 182 22
Phase III 300 37 194 177 163 35

The data sets for phases I, II, and III were kept hidden
from all the participants. Performance of the challenge en-
tries on these hidden test sets determined their rankings

and thus the winners of the Challenge. The test sets were
not available for study by participants, in order to avoid the
possibility that entries could be optimized for high perfor-
mance on the test data, thereby giving results that would
be less predictive of performance on unknown data.

The training set was significantly different from the test
sets. It was intended mainly to give the challenge orga-
nizers a way to verify that submitted entries were working
as their authors intended, as well as to give participants an
opportunity to see some of the problems that their entries
could face in the challenge. Suggestions on how partici-
pants could extend their data set with additional Physio-
Net data was posted on the Challenge website. The per-
formance of challenge entries on the training set did not
contribute in any way to their scores and ranks in the Chal-
lenge.

3. Scoring Criteria

In order to score each entry, we compared the anno-
tations produced by the participants’ code with a set of
reference annotations that reflected the consensus of sev-
eral expert annotators. The comparison was performed us-
ing the beat-by-beat algorithm defined by the ANSI/AAMI
EC38 and EC57 standards, as implemented by the ‘bxb’
and ‘sumstats’ tools from the WFDB Software Package
[2].

Each entry’s output was evaluated on four performance
statistics. The gross sensitivity (percentage of actual QRS
complexes that the entry detected as such) and gross posi-
tive predictivity (percentage of the entry’s annotations that
corresponded to actual QRS complexes) were computed
across the entire database, with every event having equal
weight. We also computed the average sensitivity and av-
erage positive predictivity by assigning equal weight to
each individual record. The overall score for the entry was
the average of these four values.

Each entry was allowed to take a maximum of 40 sec-
onds to evaluate any given record, and an average of at
most 36 seconds per record. If the program took too long
to complete, it was stopped at that point and scored based
on the annotations it had already written.

3.1. Scoring Software

The software infrastructure required to run the Chal-
lenge is shown in Figure 2. Participants were asked to sub-
mit their entries in the form of a ‘zip’ or ‘tar’ archive that
included everything needed to compile and run their pro-
gram on a GNU/Linux system, together with the complete
set of annotations that they expected their program to pro-
duce for the records in the public training set. This format
allowed us to test and score entries completely automati-
cally, and provide feedback to the participants in a matter
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Figure 2. A schematic diagram of the software infrastructure used for
evaluating Challenge entries.

of hours.
Each time an entry was uploaded to the PhysioNet

server, it was then transferred to a virtual “sandbox” sys-
tem. An identical copy of the sandbox was created for each
entry. The scoring system would then unpack the archive,
run its ‘setup’ script to compile it, and run its ‘next’ script
to analyze each of the records in the training set. If the pro-
gram could not be compiled, or did not produce the same
annotations as the submitter expected, evaluation stopped
at this point, and the error messages were sent back to the
submitter.

Once an entry was successfully compiled and verified to
be working correctly, the scoring system then proceeded
to compute the annotations on the test set. The annota-
tion files were collected, scored by ‘bxb’ and ‘sumstats’
as described above, and the final scores sent back to the
submitter. If any errors occurred during this portion of the
evaluation, they would be ignored; we did not allow the
program to report back any information about the test set,
apart from the final, aggregate scores.

In addition, the submitter could choose to designate an
entry as a “dry run” by including a file named ‘DRYRUN’
in the archive; in this case, the entry would be tested on
the training set, but not on the test set, and would not count
against the user’s limit of 5 entries per Challenge phase.

The sandbox consisted of a dual-core, 2.6 GHz AMD64
CPU running Debian GNU/Linux 7, with 2 GB of mem-
ory and 1 GB of virtual disk space for the program to use.
In addition to the standard Debian packages, the sandbox
included a variety of compilers, libraries, and utilties, in-
cluding the WFDB Software Package (version 10.5.22),
GNU Octave (version 3.6.2), and OpenJDK (version 7u55-
2.4.7). This system was hosted using KVM on a compu-
tational server with an 8-core Opteron CPU and 32 GB of
RAM; we allowed the server to run at most two entries
simultaneously, in order to ensure that each entry would
receive its fair share of memory and processor time.

We also provided a “Live DVD” image, containing all
of the same software as the sandbox system, which com-
petitors could download and run on their own machines in
order to test their entries before submitting them.

4. Results

A total of 1,332 entries from 60 teams were processed
during the challenge period, yielding a total of 317 scored
entries. The median response time, from the moment the
user submitted an entry to PhysioNet, to the moment their
scores were reported back to PhysioNet, was 28 minutes in
Phase I, 64 minutes in Phase II, and 100 minutes in Phase
III. Thus, most entries had a response time of around 3
minutes per record throughout all three stages of the chal-
lenge. Table 3 shows the top five participants for each
phase along with their average scores [3–11]. A scatter
plot of the scores for all phases is shown in Figure 3.

Table 3. Official rankings. The scores for the sample entry (gqrs) are
shown for comparison.

Phase I Phase II Phase III
93.2 Vollmer 86.2 De Cooman 87.9 Johnson
89.2 Pangerc 86.0 Vollmer 86.7 Soo-Kng
88.9 Johannesen 85.9 Pangerc 86.6 De Cooman
88.9 Ding 85.0 Plešinger 86.4 Gierałtowski
88.7 Soo-Kng 84.6 Johnson 86.2 Vollmer
89.8 gqrs 85.7 gqrs 84.5 gqrs

5. Discussion

A record number of competitors and entries were scored
throughout this year’s Challenge. User feedback was criti-
cal during the initial phases and in identifying issues with
the new scoring environment. An important concern raised
was that the training data set was too easy or not represen-
tative of the entire test sets (see Table 3). The challenge
FAQ was updated to suggest ways on how to augment the
training set (such as using the MGH/MF Database avail-
able on PhysioNet [12]), which helped some of the com-
petitors. Most of the top entries used pulsatile information,
which led to a small advantage of up to 5% over the sample
C entry that only used a single ECG signal.

Challenge participants used a variety of programming
languages and libraries to implement their entries. The ma-
jority of entries were written in Octave, using the WFDB
Toolbox [13], but several were written in C, C++, or Java.
A few entries used Octave for their main program logic,
but also used C or C++ libraries to speed up certain func-
tions. A summary of the programming languages used is
shown in Table 4.
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Figure 3. Performance for the 317 entries scored throughout the Challenge. The sample entries in C and Octave are shown in black.

Table 4. Programming environments used by successful entries.

Language Entries Teams
Octave, WFDB Toolbox 191 28
Octave, WFDB Toolbox, C/C++ 23 4
Octave, C++ 24 2
C 34 7
C++ 8 1
Java 15 1
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