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Abstract

While treating patients during their hospital stay, physicians must frequently take into
consideration massive amounts of clinical data. This data can come in many forms, such
as continuous blood pressure tracings, intermittent laboratory results, or simple qualitative
observations on the patient's appearance. Although access to such a rich collection of
information is beneficial for making diagnoses and treatment decisions, it can sometimes be
difficult for clinicians to mentally keep track of everything, especially in hectic environments
such as hospital intensive care units (ICUs). In addition, there are certain physiological
variables that cannot be measured noninvasively, but are critical indicators of a patient's
state of health. One such example in cardiology is cardiac output - the mean flow rate of
blood from the heart.

In this thesis, we explore probabilistic networks as a method for integrating different
types of clinical data into a single model, and as a vehicle for summarizing population statis-
tics from medical databases. These networks can then be used to estimate unobservable
variables of interest. We propose and test several networks of varying complexity on both
a set of experimental porcine data, and a set of real ICU patient data. We find that con-
tinuous estimation of cardiac output is possible using probabilistic networks, and that the
errors produced are comparable to those obtained from deterministic methods that employ
the same in:Formation. Furthermore, since this technique is purely statistical in nature, it
can be easily reformulated for applications where deterministic methods do not exist.
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Chapter 1

Introduction

1.1 Problem Statement

When making diagnosis and treatment decisions on patients during their hospital stay,

physicians must frequently take into consideration massive amounts of clinical data. This

data can come in many forms, such as continuous blood pressure tracings, intermittent

laboratory results, or simple qualitative observations on the patient's appearance. The

availability of information is critical to a physician's ability to make informed decisions,

and as much of it as possible should be used. However, due to the sheer amount of data

that is routinely collected in modern day hospitals, it can sometimes be difficult for clinicians

to mentally keep track of everything. In addition, there are certain physiological variables

that cannot be measured noninvasively, but yield valuable insight into a patient's state of

health.

An important example in cardiology of such a variable is the rate of blood flow from

the heart - cardiac output. Cardiac output has well-understood physiological relationships

with many routinely recorded signals, such as arterial blood pressure, but it itself cannot

be measured without invasive or expensive procedures. Knowledge of cardiac output and

other unobservable variables of interest would be especially helpful to physicians in hectic

working environments, such as hospital intensive care units (ICUs). Cardiac output is also

used in the ICU to assess the criticality of a patient's condition.

The objective of this research project is to develop probabilistic models of the cardiovas-

cular system that can be used to estimate cardiac output and other unobservable variables

of interest. We pay particular attention to solidifying the methodology behind using prob-



abilistic networks, and establishing a modeling framework that can be easily extended to

encompass more complex problems. We validate our models using experimental porcine

data and actual ICU patient data.

1.2 Motivation for Probabilistic Networks

An important class of cardiovascular models is based on lumped-parameter representations

of the hemodynamic system, where physical concepts such as vessel resistance and vascular

distensibility are modeled by electrical circuit elements such as resistors and capacitors,

respectively. These models can be designed at a level of detail appropriate for the application

at hand and therefore track the dynamics of the system in corresponding detail.

However, this class of models has two major shortcomings. First, it cannot easily in-

corporate qualitative or non-continuous data, such as descriptive observations or effects of

medication. Such intermittent and qualitative data can contain very important information

about the patient and ideally should not be discounted in modeling.

Secondly, circuit models require clean, robust, and very specific signals as inputs. Such

measurements are often difficult to obtain in real-time, or are simply unavailable, since

vitals signs are extremely noisy and can disappear completely with patient movement or

instrumentation error. Furthermore, as the complexity of these models increase, more

signals are needed to perform parameter estimation. Thus, the power of circuit models is

severely limited by the quality and quantity of available data.

Probabilistic modeling is an alternative framework that could remedy the weaknesses of

and serve as a complement to existing circuit models. Using probabilistic distributions to

describe relationships between physiological parameters gives us the ability to incorporate

qualitative, discrete, and continuous data into a single model, while providing a natural

way to handle uncertainty and noise. In addition, with the recent emergence of extensive

medical databases that contain commonly encountered pathological conditions, probabilistic

networks can be used as a vehicle for summarizing population statistics. Bayesian networks

and its variants in particular have established and computationally efficient methods for

inference and estimation, providing a convenient theoretical base to build upon.



1.3 Overview of Thesis

This thesis is divided into two main chapters.

Chapter 2 discusses the theory behind probabilistic networks, with focus on Bayesian

networks, Hidden Markov models, and Dynamic Bayesian networks. Specific techniques for

parameter learning and inference in each of the three types of networks are introduced, as

well as general concepts in probability and graph theory.

Chapter 3 explains how probabilistic networks can be used to solve our particular prob-

lem of estimating cardiovascular health and patient state. Prior work will be summarized

and results will be stated.

The thesis concludes with a summary of the contributions made, and recommendations

for future work.





Chapter 2

Probabilistic Network Theory

The probabilistic relationship between multiple random variables is fully characterized by

their joint probability distribution (JPD). This is often specified using algebraic expressions

such as Gaussian mixtures, or multidimensional arrays if the variables are discrete. The

disadvantage of expressing JPDs in this manner is that any independencies existing between

variables become buried. In addition, these expressions can quickly become intractable if

there are more than just a few variables involved. Probabilistic networks, on the other hand,

are graphical representations of JPDs that explicitly indicate the existence of independence

relationships, thereby reducing the complexity of the mathematical description.

One important application of probabilistic networks is the estimation of random vari-

ables of interest given knowledge of other variables that are probabilistically related. This

process is called inference, and many algorithms exist that exploit the graphical structure

of probabilistic networks to efficiently perform it.

In this chapter, we present the theory behind three closely related types of probabilistic

networks: Bayesian networks, Hidden Markov Models (HMMs), and Dynamic Bayesian

networks (DBNs). We first focus on the process of obtaining network parameters from a

data set, called parameter learning, and then turn to methods for performing inference on

a learned network. We limit our discussion to discrete random variables, since that is the

domain in which our models in Chapter 3 lie.



2.1 Bayesian Networks

Bayesian networks, also called Bayes nets, are directed acyclic graphs (DAGs) whose nodes

represent random variables and whose edges indicate probabilistic dependencies. A Bayesian

network is defined by its graphical structure and a set of conditional probability distributions

(CPDs) on each of its nodes. Together, they determine the network's equivalent JPD.

The applications of Bayesian networks range from modeling signal pathways in gene

networks to image recognition in artificial intelligence. In the context of medicine, Bayesian

networks are commonly used in building decision support systems to enhance clinical diag-

nosis and disease classification. For instance, Berzuini et al. [6] proposed a methodology

that uses Bayesian networks and a population database to predict the effects of drugs on

chronically ill patients.

There are two distinct steps to using a Bayesian network for modeling and estimation.

First, its graphical structure and associated CPDs must be determined. Both the structure

and CPDs can be learned from data or directly set by "expert" knowledge, meaning that

they are derived from one's holistic understanding of the system being modeled. Often

times, the network structure will be chosen to reflect the causal relationships between vari-

ables in the physical system (e.g., "rain" causes "wet grass"). However, it is important to

emphasize that although this is a valid modeling approach, the arrows in a Bayes net denote

probabilistic dependence and not causal dependence.

Structural learning from data usually involves choosing a network structure to maxi-

mize a particular information criterion; this topic is not explored in this thesis, but more

information can be found in Heckerman et al. [7].

As mentioned above, the CPDs of a Bayesian network can be set from expert or prior

knowledge, although it is more common to derive them from a data set, or from a combi-

nation of data and prior knowledge. Sections 2.1.2 and 2.1.3 explain how this can be done.

Note that although Bayesian networks are fundamentally just a method for representing

JPDs, it is easier in modeling and inference to directly manipulate the network rather than

the JPD itself.

The second step in using a Bayes net is to perform inference over a defined network,

given observations, or evidence, on a subset of the nodes. Sections 2.1.4 and 2.1.5 describe

inference via variable elimination and the junction tree algorithm, respectively.



2.1.1 Structure and Properties of Bayesian Networks

Before diving into the specific properties of Bayesian networks, we first introduce some

common terminology regarding generic DAGs. In Figure 2-1:

* X is a parent of W and Y.

* W and Y are the children of X.

* Z is a descendant of X, because there exists a directed path from X to Z.

* X is an ancestor of Z.

* An ancestral set is a set of nodes that also contains the ancestors of all its elements.

For instance, nodes X, Y, and Z form an ancestral set. Nodes X, Y, Z, and W also

form an ancestral set.

* X, Y, and Z are the non-descendants of W, because there does not exist a directed

path from W to X, Y or Z.

In addition, a DAG cannot contain any directed cycles, as its name suggests.

Figure 2-1: A directed acyclic graph (DAG).

The graphical structure of a Bayesian network explicitly indicates the independence

between variables in its associated JPD. Nodes that are connected by an edge are possibly,

but not necessarily, dependent. For instance, a node is independent of its parent if it has

the same CPDs for every outcome of its parent. Thus, a fully connected Bayes net is always

a consistent representation of its JPD. In addition, Bayesian networks possess the Markov

condition, which states that each node is independent of the set of all its non-descendants,

given the values of all its parents. Together, these properties restrict the equivalent JPD of



an n-node network to a specific and relatively simple form:

n

P(Xi, . . .,Xn) = P(Xi the parents of Xi). (2.1)
i=1

Thus, a JPD that is represented by a Bayesian network can be factored simply by looking

at its graph.

A network's independence relationships are altered by the incorporation of evidence.

For instance, Figure 2-2 describes the scenario in which there are two independent fair coin

tosses, X1 and X2, and a comparison variable X3. Conditioned on its parents, P(X 3 =

1X 1 = X 2 ) = 1 and P(X 3 = 1IX, 6 X 2 ) = 0. That is, X3 compares the outcome of the

tosses and returns 1 if they are equal and 0 if they are not. Without knowledge of X3,

X 1 and X2 are clearly independent. However, if the value of X3 is observed, then we have

information relating Xi and X2. This is called induced dependence [1].

P(X,=1)= 0.5 P(X,=1) = 0.5

1, X2=1) =
=1, X2=0) = 0

X=,n = 4
-r•A3 - I "I

-  , 
"2-V/- )

P(X3=1 I X,=0, X2=1) = 0

Figure 2-2: Induced dependence in Bayesian networks. Each node is a binary random vari-
able with sample space {0, 1}. When X3 is observed, X1 and X2 are no longer independent

[1].

A method for determining if two sets of nodes in a Bayesian network are independent,

conditioned on a third set of nodes is to check for d-separation. Before we can define d-

separation, we introduce two important concepts in graph theory. First, the moral graph

of a DAG is defined to be the undirected graph that results from connecting together

("marrying") in the DAG every pair of nodes with a common child, and then dropping the

directionality of all the edges. The process of creating a moral graph is called moralization.

Secondly, a set of nodes Z is said to separate the sets X and Y in an undirected graph if

and only if a node in Z is on every path connecting nodes in X with nodes in Y.



000

(b)

Figure 2-3: Illustration of d-separation. Shown in (b) is the moralized smallest ancestral
set containing X, Y, and Z of the Bayes net in (a). Moralizing a larger ancestral set will
not give the correct independence statement, as shown in (c).

The definition of d-separation for disjoint sets X, Y, and Z in a Bayesian network is as

follows:

Set Z d-separates sets X and Y if and only if Z separates X and Y in the moral

graph of the smallest ancestral set containing X, Y, and Z. Furthermore, if Z

d-separates X and Y, then X and Y are independent, conditioned on Z [8].

The example in Figure 2-3 shows the importance of only moralizing the smallest ancestral

set. The smallest ancestral set containing nodes X, Y, and Z of the Bayes net in Figure

2-3(a) is shown in Figure 2-3(b). Notice that this graph is already moral. Since there are

no edges between any of the three nodes, X and Y are independent, conditioned on Z,

according to the definition of d-separation (they are in fact independent regardless of Z).

However, if the entire network (also an ancestral set) is moralized, then node Z no longer

separates X and Y.



2.1.2 Concepts of Bayesian Probability and Estimation

There are two schools of thought on the interpretation of probability and estimation:

Bayesian and classical. In this section, we briefly discuss the differences between the two in

the context of parameter learning, with the primary objective of introducing the Dirichlet

distribution.

Suppose we have a biased die with r faces. The outcome of a roll of the die can be

modeled as a discrete random variable X with sample space {1,..., r}. Furthermore, let

D = [D1,..., Dr] be the number of times our die lands on each face after a sequence of

N tosses. Let the bias on the i th face of the die be Oi and O = [01,... ,0,-1]. The 8i's

are called the parameters of X because they specify the probability that the outcome of

X will be i: P(X = ilo) = Oi. Notice that O only has r - 1 independent elements, since

Or = 1 - -=1 8i. The distribution of X is therefore a probability mass function (PMF)

with histograms of heights [81... Or]. The distribution of D is then multinomial, which is

just the multivariate generalization of the binomial distribution. Recall that the canonical

example of a binomial random variable is the number of heads obtained in a fixed number

of independent coin tosses. In many modeling problems, O is unknown and is the target of

estimation.

In the classical interpretation of this example, O is a deterministic but unknown quan-

tity. If d is a particular outcome of D, then the classical approach estimates O by its

relative frequency of occurrence in a data set:

OiML = r (2.2)

This is called the maximum likelihood (ML) estimate because it maximizes the likelihood

function, 2£() = P(d O). However, this estimate of E is just a single number without an

associated measure of uncertainty. The uncertainty should be related to the size of the data

set; that the estimate does not reflect the amount of data used is a major shortcoming of

the classical approach.

In Bayesian estimation, O is considered to be a random variable and is often assumed

to have a Dirichlet distribution (see Figure 2-4) [9]. Thus, we do not have a single number

as an estimate for 0, but rather a distribution that tells us how likely each outcome of O

is.



The Dirichlet distribution, denoted Dir(8; al1,..., a,), has the following form,

Dir(; al,..., ar = r(E L ) l t,- (2.3)

where F is the gamma function,

F(z) = tz-le-tdt,

which, for integers, reduces to

F(z) = (z - 1)!.

The ai's are nonnegative real numbers and are called hyperparameters, since they param-

eterize the distribution of the 'parameters' 8 (now taken as random variables).

One important reason for using the Dirichlet distribution is that it is the conjugate prior

of the multinomial distribution. This means that the a posteriori probability of 8 given

the multinomial sample d remains a Dirichlet distribution with new hyperparameters:

P(Old) " Dir(8; al + di,..., a, + dr). (2.4)

Thus, as new data is observed, the hyperparameters are updated and O's distribution

changes (see Figure 2-4). This property forms the basis of how new data is used to update

the CPDs of Bayesian networks, as will be explained in Section 2.1.3.

There are two useful point estimators for 8 that can be derived from its distribution:

the maximum a posteriori (MAP) estimate and the minimum mean squared error (MMSE)

estimate. The MAP estimator maximizes P(8OD) and is therefore equal to the mode of

P( OID). For a Dirichlet PDF, the mode is given by:

OiMAP = - (2.5)(-i Oi) -r

Recall from Bayes' rule that P(O8d) oc 2(8)P(8). Thus, the ML and MAP estimates are

equal if the prior is uniform.

The MMSE estimate minimizes the mean squared error, and can be shown to equal the



Figure 2-4: The Beta PDF with hyperparameters a and f is the univariate case of the
Dirichlet PDF. Plotted here are Beta distributions for varying values of a and 6. When
a = f = 1, the Beta PDF is uniform. As a + P increases, the distribution becomes more
and more peaky around its mode, suggesting more certainty on the outcome of the random
variable.

expectation of P(OID). For a Dirichlet PDF, this is given by:

OiMMSE = E[Oi] = aYi- (2.6)

From the discussion above, one can see that the Bayesian framework provides us with a

richer picture of the estimation problem than the classical approach, since the uncertainty

in our estimate is quantified by the distribution of 8. More importantly for applications,

Bayesian probability allows us to define a nonuniform prior distribution that biases the

estimates towards our prior beliefs or expert opinions.



2.1.3 Parameter Learning from Complete Data and Prior Knowledge

In this section, we discuss how the CPDs of a Bayesian network can be learned from a

combination of data and prior knowledge. The CPDs are often referred to as the parameters

of a network and are denoted collectively by O. As shown in Figure 2-5, the distribution

of a parentless node Xi is simply a PMF with histogram heights [9i,1,..., i,r-1], if that

particular node has r possible outcomes. This is analogous to the die example in Section

2.1.2. Furthermore, it is assumed that the CPD of a child node can be independently

specified for each combination of values taken by its parents. This parameter independence

assumption, introduced by Spiegelhalter and Lauritzen [10] [11], means that the CPD of

a child node Xi is also just a PMF with histogram heights [9 i,j,1, ... ,i,j,r-1], where j

represents a particular parental configuration. Thus, learning the parameters of a Bayesian

network, or training the network, amounts to determining [0i,j,1,... , Oi,j,r-1] for each node

and each combination of parental outcomes.

Taking the Bayesian approach to probability that was discussed in the previous section,
8 ij = [Oi,j,1,... , i,j,r-1] is then a Dirichlet random variable. Let [M•,..., ar] be the initial

hyperparameters of Oi. Then [a7, ... , ,a] quantifies our prior knowledge or belief of what

the parameters of the Bayes net should be before observing any evidence. The larger

Erl1 Sa is, the more certain we are about our guess, since this corresponds to a more

peaky distribution. [,... parameter that we can freely change, ao] is a parameter that we can freely change, and is especially

important in problems where the amount of available data is limited.

To update [i,j,1, ... , i,j,r-1] for a node after observing evidence on that node, we use

Equation 2.4: Let d = [dl,..., dr] be an observed data set for node i and parental configura-

tion j. Then the Dirichlet hyperparameters changes from [a ,... , aO ] to [O +dl, . . ., a+dr].

To obtain a point estimate for [8i,j,1,... ,0i,j,r-1], we can either maximize its PDF using

Equation 2.5 or take its expected value using Equation 2.6. Under the assumption that the

data set is complete, learning the parameters of a Bayes net entails performing this process

over all the nodes and parental configurations in the network. For a discussion on learning

with missing data, refer to the explanation of the EM algorithm in Dempster et al. [12] or

the tutorial by Bilmes [13].
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Figure 2-5: Each combination of outcomes for X1 and X2 gives rise to an independent CPD
for X3.



2.1.4 An Introduction to Inference

Once a Bayesian network is constructed, it can be used to infer the distributions of

variables of interest, called query variables. The basic step in inference is marginalizing or

conditioning the JPD of a network over those variables that are respectively inconsequential

or observed. For instance, if we were interested in finding the marginal density of Xi from

P(Xi,. . .,Xn), then

P(Xi)= = P(Xi,...,Xn), (2.7)
X\X,

where X = {X 1,..., Xn} and X \ Xi denotes the subset of X excluding Xi.

Marginalization is a concept from probability; it is not unique to probabilistic net-

works. The existence of a graphical representation of the JPD simply provides a visual

understanding of its decomposition into a product of CPDs. Inference is a simple concept;

the difficulty stems from the computational complexity of performing multiple summations

over large multivariate functions. Thus, the goal of any inference algorithm is to reduce the

complexity of this calculation by exploiting simplifying relationships between the variables.

One of the simplest and most general inference algorithms is variable elimination, whose

basic idea is to eliminate factors of a JPD by distributing sums into products [14]. For

instance, suppose we had the Bayesian network in Figure 2-6(a). From its structure, we

can immediately say that its corresponding JPD is:

P(X 1, . ..,X5) = P(Xi)P(X2)P(X3 X1, X 2)X2)P(X4 1X2)P(Xs5 X3 , X4). (2.8)

If we were interested in finding P(X 4), then we would marginalize P(Xi,...,X 5) over all

the variables except for X4:

P(X4) = E PP(X 1,...,X5)
X1 X2 X3 X5

= E Z E P(X1(X2)2)P(X3 X1, X2)P(X41X2)P(X5 1X3, X4)
x1 X2 X3 X5

= P(X1) (E P(X2)P(X4 X2)(: P(X3X1I,X 2)(E P(Xs5 X3, X4))))
X1  X2 X3  X5

By factoring out terms that do not depend on certain summations, we are left with a series



of operations that are each over a function with fewer variables than in the original. This

is desirable because the computational work required is bounded by the largest summation

term [14]. This technique becomes inefficient for multiple query variables, but the concept

of distribution of sums over products is present in other more efficient and specialized

algorithms. The next section describes one such example: the junction tree algorithm.

For inference in the presence of evidence, a similar procedure is used to evaluate the

conditional (rather than marginal) probability of the variable of interest, given the obser-

vations.



2.1.5 The Junction Tree Algorithm

The junction tree algorithm is a commonly used method for inference in Bayesian net-

works. Rather than acting directly on a Bayes net, it employs a message-passing routine on

a secondary graphical structure called a junction tree. Thus, this algorithm can be applied

to any type of graph that is convertible to a junction tree, making it a very versatile and

general purpose inference technique. In this section, we describe the process of converting

a Bayesian network to a junction tree, and then the subsequent message-passing routine

that is used to compute the marginal distributions [15]. We demonstrate the steps on the

example in Figure 2-6(a) as we progress through the algorithm.

(a) (b) (c)

Figure 2-6: An example Bayesian network is shown in (a). The triangulated moral graph
of (a) is shown in (b). The MRF in (c) is an example of a non-triangulated graph [2].

The first step is to convert the Bayes net into a undirected graph through moralization,

which we defined in Section 2.1.1. Figure 2-6(b) shows the moral graph of Figure 2-6(a).

Undirected graphs, called Markov random fields (MRFs), are themselves a commonly used

modeling framework, and the remaining steps of this discussion are directly applicable to

inference in MRFs.

The second step is to triangulate the moral graph by adding a chord to every cycle

with four or more nodes. The moral graph in Figure 2-6(b) is already triangulated. Figure

2-6(c) is an example of a non-triangulated graph. It can be shown that an undirected graph

can be converted to a junction tree if and only if it is triangulated [16]. Two nodes in an

undirected graph are independent, conditioned on a third node, if and only if the removal



of the third node results in their separation. Thus, by adding extra chords, triangulation

does not preserve all the independence relationships that existed in the original MRF. Also

note that triangulation is not in general a unique process. The order in which the chords

are added is associated with an elimination order, and there is an optimal elimination order

that results in a junction tree with the least computational complexity; see Huang and

Darwiche [15] for a discussion on how to choose the optimal elimination order.

The next step is to form a junction tree from the triangulated graph. The nodes of the

junction tree are the cliques of the moralized triangulated graph. A clique is a maximally

complete subgraph of an undirected graph, meaning that each node in a clique is connected

to every other node in the clique, and no additional node can be included in it such that

this is still true. In terms of notation, we will not distinguish between a clique Ci of the

graph and the set of random variables associated with the clique.

We require the junction tree to satisfy the running intersection property, which states

that for every pair of nodes i and j of the junction tree, i.e., for every pair of cliques Ci

and Cj, all cliques on the unique path between Ci and Cj must contain Ci n Cj. Figure

2-7(a) shows the cliques of the moral graph in Figure 2-6(b), and Figure 2-7(b) shows a

junction tree. The existence of a junction tree is guaranteed for any triangulated graph,

as mentioned previously. In general, multiple junction trees can be derived from a given

triangulated graph; a method for choosing the optimal one is described in Huang and

Darwiche [15].

The last step is to explicitly draw out the separator sets between each node pair, as

shown in Figure 2-7(c). A separator set Sk between cliques Ci and Cj is a node that

contains the variables common to both cliques: Sk = Ci Cj.

This junction tree that we have created is just another factorization of our original

JPD, except that the factors have changed from CPDs to potential functions. A potential

function, denoted by Jce or 's,, is simply a mapping from the variables in Ci to the

nonnegative numbers. It can in general have arbitrary form and need not be a probability

distribution. There is a potential function associated with each clique and separator set

in a junction tree, and the product of the clique potentials divided by the product of the

separator potentials must equal the JPD of the network:

P(U) = Mi 'C, (2.9)
P -j qIsj
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Figure 2-7: The cliques of a moralized triangulated graph are circled in (a). Its junction
tree is shown in (b). The separators sets are explicitly drawn in (c) [2].

where U is the set of all the variables in the network, TcI is the potential of the ith clique,

and ils is the potential of the jth separator set.

We now explain how manipulation of these potential functions leads to the marginals

of our query variables. The potential functions must first be initialized. Then they are

rearranged via the aforementioned message-passing routine such that at its termination,

the potential at each clique and separator set is equal to the marginal distribution over the

variables contained by that node.

The initialization of a junction tree's potentials is done via the following procedure (see

Figure 2-8):

1. Assign the potential of each separator set to 1:

TIsi = 1.

2. Assign each term of the original JPD factorization (see for example Equation 2.8) to a

clique that contains the variables appearing in that CPD factor. If a clique is assigned

more than one CPD factor, multiply them together:

WcQ = I P(Xklthe parents of Xk),
k

where Xk, and the parents of Xk, are contained in Ci.



Note that by assigning the potentials in this manner, the condition in Equation 2.9

holds.

P (x) P (X,) P(X, I , x,)
C"

(x 1 xI) X

x2 X31 X4 2

x,, x4 1p (x4 | X2)
X31 X4, X5 S2

>(>( I;

P(x51x, x,) p(X51 31, X,)

(a) (b)

Figure 2-8: The CPD factors of the Bayesian network in (a) are assigned to cliques in the
junction tree in (b) in the initialization step. The separator potentials are set to 1.

A message pass from an arbitrary clique Ca to its neighboring clique Cb, through their

connecting separator set S, is defined as follows:

1. Create an updated separator potential V9 that is equal to the summation of the

potential of Qa over all the variables in Ca except those that are also in the separator

set.

TS > FCa

Ca\S

2. The potential of clique Cb is updated by multiplying its old potential by the ratio of

the new separator potential to the old separator potential.

Cb= -IlsIcF

If more than one branch intersects at Cb, then the separator ratios of each branch are

multiplied together.

w b i tS w

As a simple example, we show below that if the two node network in Figure 2-9 is



initialized such that Equation 2.9 holds, then Equation 2.9 remains true after two message

passes in opposite directions.

Initialization:

Is = 1

P(C U C2) = Ci C2

= 'Ic1 'I'c 2

Message pass from C1 to C2:

C \S

•c = cs

= cP Cc1 C 2
C1\S

Message pass from C02 to C1:

C2 \S

C2\S CI\S

= • C2  1C1
C2\S CI\S

S PC1

EC 2\S TC2 ECx\S CXCl

CC \S TIC1

= S c2 Pc11
c 2\S



Find the ratio of new clique potentials to separator potential:

F* IQ* 'c\s@c2Qc I Ecl\s Qcl0Fc 2

C1___ C2_ C2 \SC C \S C

ZC 2\S TC2 EC 1\S 'C 1

= P(C1 U C2)

Pcl Ls TC2

Figure 2-9: Two iterations of message-passing occur in opposite directions.

Now that we have defined message-passing between two cliques, we generalize it for an

entire junction tree. The process has two stages called Collect Evidence and Distribute

Evidence. These two stages correspond to the two iterations of message-passing discussed

in the previous paragraph. If the junction tree potentials are initialized such that Equation

2.9 holds, then Equation 2.9 will still hold after running Collect Evidence and Distribute

Evidence.

To perform Collect Evidence, first chose a clique in the junction tree to call the root.

This choice can be arbitrary, but it is beneficial in terms of computation time to choose

a root that is equally far from all the terminal cliques. Message-passing during Collect

Evidence begins at the terminal cliques of the junction tree and propagates towards the

root clique. A nonterminal clique node must wait until it has been updated by a message

pass before initiating its own message. If a clique is connected to multiple branches, and thus

receives multiple messages, then it must wait until all the messages have been received before

propagating it forward. Collect Evidence terminates once the root node has been updated.

Figure 2-10(a) shows the updated potentials of our example network after performing Collect

Evidence with C2 as the root.

Distribute Evidence is the same procedure as Collect Evidence, except that the message-



passing begins at the root. The routine ends when all the terminal cliques have been

updated. At the end of Collect Evidence and Distribute Evidence, the potential function

at every clique and separator is equal to the node's marginal distribution, P(Ci) or P(Sj),

as shown in Figure 2-10(b). This is the main result of the junction tree algorithm. Recall

that the purpose of the junction tree algorithm is to efficiently calculate summations over

a JPD in order to find the marginals of our query variables. Now, instead of performing

summations over the JPD of an entire network, we need only choose the smallest node that

contains our variable of interest and perform marginalization on its potential function.

P(X)P( x,)P(x,3 x1 , 2)

X1X2,X3 S I

X31 X4  (x , x, x4)

P(x5 X•, x,)

P (X, X21 X3)
C•: xP(X, Xx)

X2, X3, X4 0-2

3 P( Pxx 3, ,, x,)

'P(x3, x, x5)

(b)

Figure 2-10: Collect Evidence propagates messages towards the root, as shown in (a).
Distribute Evidence propagates messages towards the terminal nodes, as shown in (b).

The discussion above describes inference on a network where all the nodes are unob-

served; there is no explicit treatment of evidence. Evidence changes the CPD factors of the

original Bayesian network. For discrete random variables, CPDs are represented as tables

whose entries are the probabilities of each possible outcome. Introducing evidence replaces

the corresponding table entries with either 1 or 0, since that particular outcome is now

known. Thus, each time new evidence is incorporated, the potential functions must be al-

tered and Collect Evidence and Distribute Evidence must be rerun. However, the structure

of the junction tree stays the same throughout.



2.2 Hidden Markov Models

Hidden Markov models (HMMs) are a type of probabilistic network that is commonly

used in the modeling of dynamic systems. They are an extension of Markov chains and a

close relative of Bayesian networks. Like Bayesian networks, nodes in an HMM represent

random variables and directed edges represent probabilistic dependencies. Unlike Bayesian

networks, all standard HMMs have the specific network structure shown in Figure 2-11. At

each time instant, an unobservable state node Xt emits an observed symbol Yt, also called

the output node. The state variable models a first-order discrete-time Markov random

process, which satisfies the Markov property. Similar to the Markov condition for Bayesian

networks (Equation 2.1), the Markov property states that:

P(Xt+ IXt, Xt-1,...) = P(Xt+lIXt). (2.10)

In other words, the future state in an HMM is independent of the past states if conditioned

on the present. Furthermore, the emitted symbol Yt is independent of all other nodes if

conditioned on Xt.

An HMM is defined by its transition, emission, and initial state probabilities: P(Xt+ IXt),

P(YtlXt), and P(Xo). If the nodes of the HMM are discrete, then these probabilities are

defined by the matrices, A = [aij], B = [bij], and H = [=ri], respectively, which are collec-

tively referred to as the model parameters and denoted by A(A, B, H). The entry aij is the

probability of a transition to state j in the next time step, given that the state is currently

aij = P(Xt+l = jIXt = i). (2.11)

The entry bij is the probability that state i will emit symbol j,

bij = P(Yt = JIXt = i). (2.12)

The entry ri is the probability that the Markov process begins in state i at time t = 1,

7ri = P(Xo = i). (2.13)

Notice that each row of A and B must sum to 1.



The canonical example of a situation that can be modeled by an HMM is the ball-and-

urn problem [17]. Suppose we had M urns, each containing a different selection of balls of

N possible colors. The urns are hidden from view and a sequence of balls is drawn for us

to see. In this example, the urns are the states and the ball colors are the emitted symbols.

The transition probabilities govern the sequence of urns from which the balls are drawn,

and the emission probabilities correspond to the probability of choosing a certain ball color

from each different urn. In this case, A is M x M and B is M x N.

There are three basic problems associated with HMMs that are frequently encountered:

1. Given the model parameters A, find the probability of a particular observation se-

quence, y.

2. Given A and an observation sequence y, find the underlying sequence of states x* that

maximizes the probability of generating y.

3. Given a set of observation sequences T = {y), find the A that maximizes the proba-

bility of generating T.

The first problem involves evaluating P(Y = ylA) = -all possible X P(Y = y, XIA),

which can be accomplished efficiently using the forward-backward algorithm. This question

is not relevant to our applications in Chapter 3 and will not be discussed in this thesis.

More information on the forward-backward algorithm can be found in Alpaydin [17].

The second problem is essentially an inference problem, where the symbols are the ev-

idential nodes and the states are the query nodes (see Section 2.1.4). It can be efficiently

solved using the Viterbi algorithm, which is explained in Section 2.2.1. Note that in this

problem formulation, inference occurs offline since the observations for the entire time in-

terval must be known in advance. This is called fixed interval smoothing [18].

The third problem describes parameter learning from incomplete data, and can be solved

using the Baum-Welch algorithm, an expectation maximization technique. For a detailed

description of Baum-Welch, see Alpaydin [17]. If a complete data set is available for training,

then the model parameters can easily be obtained via the method introduced in Section

2.1.3 for Bayesian networks. This is further discussed in Section 2.2.2.

HMMs are used for modeling in many areas of research. One well-known application is

in the area of automatic speech recognition (ASR). Additional information on ASR can be

found in Rabiner's tutorial on HMMs [19].



Figure 2-11: A standard Hidden Markov Model.
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2.2.1 The Viterbi Algorithm

The Viterbi algorithm is a dynamic programming method for inferring the most likely se-

quence of hidden states, given a particular observation sequence and the model parameters.

In other words, we are looking for x* such that,

x*= argmax P(X=xlY=y,A).
X={X1,...,XM}

(2.14)

Let there be M possible states {S, . .. , SM} in an HMM of length T with model parameters

A, B and II. Let 6t(j) equal the joint probability of the most likely sequence of states that

ends in state j at time t, and the emission of all the observations up to time t:

6t(j)= max P(xl,...,xt-i,t =j,yl,..,ytIA).*
Xl '.. •t-1

(2.15)

Finally, let 't(j) equal the most likely state at time t - 1 such that the process is in state

j at time t. In other words, Ot(j) is the state at t - 1 in the sequence of states associated

with probability 6t(j). As shown below, the Viterbi algorithm recursively calculates 6t(j),

while keeping track of the most probable penultimate state in "t(j). The most likely state

sequence is then calculated as the algorithm backtracks through the recursion.

Initialization:

6s (j)

bIc(j) =0

Recursion:

6t(j)

lot U)
= max6tl(i)aij bjyt

Sargmax t-l(i)aij
i



Termination:

4 = argmax6T(i)

Backtrack:

x4 = - t+1(tx+), for t = T- 1, T- 2,....,1

In the initialization step, 61(i) is equal to the probability that the process will initially

begin in state i and emit yl. Since there is only one possible path for the process to take

to reach i at t = 1, 61(i) is also the probability of the most likely path that terminates in

i and yields yl. This is consistent with the definition in Equation 2.15. 01(i) is arbitrarily

initialized to 0 since there is not yet a penultimate state.

The recursive step assumes that we already have the probability of the most likely path

that ends in i at t - 1: St- (i). Notice that this probability is a function of the state at t - 1.

In other words, the state at t - 1 is fixed by us, but all the states previous to that are chosen

to be the most probable given the observations up to that point. 6t-l(i) is then multiplied

by the transition probability from i to j and the emission probability of generating symbol

Yt from state j, thereby obtaining the probability of the state path that is in i at time t - 1

and j at time t, and that emits the observed symbols. This expression is maximized over

all the possible i's so that 6t(j) is once again only a function of the latest state. The i that

achieves this maximization is stored in t (j). Thus, lt (j) has a different value for each

possible current state j.

Once the recursion reaches the end of the HMM, 6T(i) is the probability of the entire

observation sequence and the most likely state sequence that ends in state i. The terminat-

ing step is to maximize 6 T(i) over the i's. The state that achieves this maximization, x4,

is the most likely state at time T.

After x4 is determined, we backtrack through the Ct (j)'s to find the rest of the sequence.

Recall that 4t (j) stores the most likely state at time t - 1 given that the state at t is j.

Thus, x* is equal to Vlt+l(xz*+) for t = T - 1,T - 2,..., 1.



2.2.2 Parameter Learning from Complete Data and Prior Knowledge

The model parameters of an HMM are its transition, emission, and initial state probabilities,

and the process of learning them is exactly the same as that in a Bayesian network. The

transition probability corresponds to the CPD between node Xt and its only parent, Xt-1.

The emission probability corresponds to the CPD between node Yt and its only parent, Xt.

As we work through the training data set, we increment the appropriate matrix element

in A for each combination of Xt-1 and Xt that is observed. Similarly, we increment the

appropriate elements of B each time we observe a combination of X(t) and Y(t). The

matrices can be initialized with nonuniform entries to bias the model parameters towards

prior knowledge, functioning like the Dirichlet priors in Bayesian networks. Note that the

matrices must be normalized over each row to obtain a proper stochastic matrix.

2.2.3 Multiple Output HMMs

There are many variations of the standard HMM structure that can be used to model

more complex systems. Figure 2-12 shows two such examples [18]. One of the simplest

extensions that can be made is to have multiple independent observed nodes for each state

node, as shown in Figure 2-13(a). If the emission probabilities of Yt and Zt are P(YtlXt)

and P(ZtlXt), respectively, then P(Yt, ZtlXt) = P(YtIXt)P(ZtlXt).
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Figure 2-12: The transition probability of an input-output HMM, shown in (a), is condi-
tioned on both the previous state and an input variable: P(Xt Xt_-, Ut). The emission
probability of a factorial HMM, shown in (b), is conditioned on two or more independent
states: P(YtlXt, Xt2).
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Figure 2-13: The state of a multiple output HMM emits two symbols at each time instance.
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2.2.4 Autoregressive HMMs

In an autoregressive HMM, the assumption that an observation is only dependent on the

current state is relaxed so that the observed variable also models a time series [20] [21], see

Figure 2-14.

A discrete autoregressive HMM model with M states {1,..., M} and N symbols {1,..., N}

is defined by its transition, emission, and initial state matrices, as follows:

1. A probability distribution for the first state, II = [7rl,... , 7rM].

2. A two-dimensional state transition matrix, A = [aij], that specifies the probability of

transition to state j in the next time step, given that the state is currently i.

3. A three-dimensional transition array, C = [cij,], that specifies the probability of

emitting symbol j at time t, given that the emitted symbol at time t- 1 was i and that

the state at t is s. C can also be written as a collection of two-dimensional matrices,

CS = [csi], to explicitly show that it is a transition matrix between successive symbol

nodes. The rows of CS should sum to 1.

Notice that an autoregressive HMM reduces to a standard HMM if each CS has identical

rows.

The algorithm for finding the most likely sequence of states in an autoregressive HMM

is almost identical to the standard Viterbi algorithm, except B is replaced by C [21]:

Initialization:

61(j) = P(xi = j, yo, yi)

=- 7rjyoy 1

Recursion:

6t(j) = max P(xl,...,Xt-l,xt =j,Yo,. .,yt)X1 · x---, I-1
= max6t_l(i)aij i -cYti Y-~



Termination:

4 = argmax6T(i)
i

Backtrack:

for t=T-1,T-2,...,1

000

0SO

Figure 2-14: An autoregressive HMM.

* = argmax6t(i)aixt+1xt



2.3 Dynamic Bayesian Networks

In Sections 2.2.3 and 2.2.4, we extended the standard HMM structure to include more

complex networks in each time-slice. Dynamic Bayesian networks (DBNs) are an even

further extension, where the network in each time-slice can be any arbitrarily complex

Bayes net, and the node are allowed to represent higher-order Markov random processes,

i.e. to have a dependence on the past that extends beyond one time-slice. Thus, the

concepts of state transition and emission probabilities no longer apply. Instead, a DBN is

defined by:

1. A set of intra-slice CPDs that describes the factorization of the local Bayes net.

2. A set of inter-slice transition CPDs that governs the temporal relationships between

slices. If all the nodes are first-order Markov, then the temporal probabilities need

only be specified between adjacent time points. If there are higher-order temporal

dependencies, then multiple sets of inter-slice probabilities must be specified (see

Figure 2-15(b)).

The notion of emitted symbols and hidden states is now replaced by designating observed

and unobserved nodes.

The process of parameter learning is essentially the same for DBNs as it is for static

Bayesian networks and HMMs. Only two sets of probabilities need to be determined for

first-order Markov DBNs: one set to characterize the Bayes net in the initial time slice, and

one to relate the networks at times t and t + 1.

Since there are minimal restrictions on the structure of DBNs, they can be powerful and

versatile tools for modeling and estimation of sequential processes. However, the generality

of the definition also leads to even greater computational challenges in performing inference.

The most straightforward way to perform inference in a DBN is to unroll the network over

the entire time interval. The unrolled network is then just an equivalent static Bayes net on

which standard Bayesian network inference techniques, such as the junction tree algorithm,

can be applied. However, one can easily see that even the simplest DBN (such as a standard

HMM) can become intractable if unrolled over a long time interval. Also, since both the

intra-slice and inter-slice probabilities do not change with time, there is a great deal of

redundancy in completely unrolling a DBN. Another approach would be to convert the



DBN into an HMM and use the forward-backward algorithm. An in-depth explanation

of these approaches, as well as other efficient DBN inference algorithms, can be found in

Murphy [18].

In general, inference methods are either exact or approximate. The goal of exact infer-

ence algorithms is to obtain an exact expression for the marginal distribution over the query

variables. The junction tree algorithm, for instance, is an exact inference technique. How-

ever, since DBNs can easily become very complex, exact inference is often computationally

intractable. In contrast, approximate inference methods, such as the Boyen-Koller algo-

rithm, settle for finding approximations to the marginal distributions. Further information

on approximate inference can also be found in Murphy [18].
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Figure 2-15: Three slices of an unrolled first-order Markov DBN are shown in (a). The blue
dashed arrows indicate the inter-slice probabilistic relationships, while the black solid arrows
represent the intra-slice dependencies. Shown in (b) is a DBN that also has a second-order
Markov node, X.



Chapter 3

Applications to Cardiovascular

Monitoring

In this chapter, we apply the concepts of probabilistic networks toward solving the problem

of patient state estimation in the ICU. We use these networks as a method for capturing

physiological relations in medical databases, and subsequently as a tool for estimating un-

observable variables of interest in individual patients. Rather than trying to produce a

diagnosis or a categorical result, like in many other medical applications of machine learn-

ing, we aim to derive an actual time series estimate of the unknown physiological parameter.

Our focus is on cardiac output. The hope is that time series estimates will provide physi-

cians with a more complete picture of a patient's medical condition than a binary decision

variable. We also emphasize here that this modeling framework can in principle be easily

extended to other selections of query and evidential variables.

In the first section of this chapter, definitions of important physiological terms and

abbreviations will be stated. The origins and limitations of the two data sets that we will

be using are described in Section 3.2. Section 3.3 introduces the various software toolboxes

that were used in the implementation of the code. Sections 3.4, 3.5, and 3.6 present the

different networks that were tried, and the results of each approach. Finally, Section 3.7

provides a summary of the results and a discussion of the major points of the chapter.



3.1 Terminology and Abbreviations

There are a few terms from cardiovascular physiology that will be used repeatedly in the

remainder of this thesis. They include heart rate (HR), mean arterial blood pressure (ABP),

cardiac output (CO), stroke volume (SV), and total peripheral resistance (TPR).

The definition of HR is self-evident and its values are presented in units of beats per

minute (bpm).

ABP is the mean pressure in the systemic arteries (the arteries leading away from the

left ventricle), and is usually sampled from the femoral artery.

CO is the average flow rate of blood that is pumped out of the left ventricle. It is

a quantity that cannot be continuously measured without attaching a flowmeter to the

aorta. A clinical method for obtaining sporadic CO measurements is thermodilution, which

involves tracking the thermal profile of the bloodstream after an injection of a bolus of

cold fluid. Thermodilution is generally only performed a few times during a patient's ICU

stay, as it requires the insertion of a catheter by a physician, and careful execution. CO

is a critical measurement of cardiovascular health because it directly affects the amount of

oxygen delivered to the body.

SV is the amount of blood that the heart pumps out per cardiac cycle. SV, CO and HR

are related by the following equation:

CO
SV = C (3.1)HR

TPR is the effective resistance to flow of the entire systemic vasculature. It is analogous

to electrical resistance if a pressure drop is thought of as a voltage drop, and fluid flow is

thought of as current flow:
ABP

TPR = ABP (3.2)
CO

We will also be looking at the effects of three drugs: Dobutamine (DBM), Esmolol

(ESM), and Nitroglycerin (NTR). Dobutamine is a /1 agonist, which means that its effects

on the cardiovascular system are to increase contractility (a measure of the strength of

cardiac contractions) and HR. Thus, an infusion of Dobutamine will increase the subject's

CO. Esmolol is a 31 blocker and has the opposite effects of Dobutamine. Nitroglycerin is a

vasodilator, which causes TPR, and consequently ABP, to drop.



3.2 Description of the Data Sets

The networks presented in this chapter were validated using two different sets of data. The

first set was derived from experimental procedures conducted on nine Yorkshire swine [22],

five of which were appropriate for our purposes. Each file in this data set contains continuous

measurements of HR, CO, and ABP. Time stamps and dosage records of drug infusions are

also available for each swine. The main advantage of this data set is the availability of true,

invasively measured CO. The main disadvantage is the small number of subjects.

The second data set comes from the MIMIC II ICU database [23], which is a collection

of recordings from actual ICU patients. This data set contains continuous measurements

of HR and ABP, but only sporadic CO measurements via thermodilution (only 1351 points

in total across 120 patients). Since such a small number of noncontinuous CO data is

insufficient for our purposes, we supplement these 120 MIMIC II patients with continuous

CO estimates from Parlikar [24]. The prior work described in Section 3.4.1 also uses CO

estimates obtained by Liljestrand's method [251. We consider these estimates to be the

truth when training and testing our networks, because they are our best alternative. It

is reasonable for us to test our CO estimates using another estimated value as reference,

because methods such as those described by Liljestrand and Parlikar are derived from

detailed models of the cardiovascular system, and require knowledge of variables that our

methodology does not employ, such as actual blood pressure waveforms. Thus, the dynamics

that we are trying to capture with network models are not on the same accuracy scale as

those described by the aforementioned methods.

In addition to the lack of true measured CO, another disadvantage of the MIMIC II data

set is that the physiological conditions of the patients generally do not fluctuate significantly.

The lack of variability is not ideal for training data because it translates to unpopulated

entries in the conditional probability matrices.

Records of administered medications also exist for this data set; however, extracting

this information is nontrivial and was not done for this thesis.

3.3 Software

The Bayesian network and DBN code that was written for this chapter employs K. P.

Murphy's implementation of the junction tree algorithm, which can be found in his Bayes



Net Toolbox for Matlab [26]. The Matlab HMM toolbox was used for the most-likely-state-

sequence calculations in Section 3.5.

In addition, we extensively explored the GeNIe/SMILE software package for Bayesian

networks and DBNs [5], although we do not present any results from it. SMILE is a C++

library of tools for developing and manipulating Bayesian networks. It contains imple-

mentations of several approximate inference algorithms, and has been updated recently to

support DBNs. It is a good software package to use if approximate inference is necessary

(such as in a large network), but is currently lacking in documentation with regards to

DBNs. GeNIe is a graphical user interface that can be used in conjunction with SMILE. Its

functionalities are not completely caught up with those of SMILE, but it is an accessible

tool for anyone interested in Bayesian networks to use.

3.4 Bayesian Network Models

We first use static Bayesian networks to compute estimates for cardiac output. It is im-

portant to emphasize that although the estimates in this section are time series, simple

Bayesian networks do not contain information on the temporal behavior of their variables.

In other words, the cardiac output times series are simply obtained by piecing together

point estimates made at each time instance.

3.4.1 Prior Work and Results

The background for the work in this thesis is primarily derived from a thesis and paper

by J. M. Roberts [3] [4], who tackled the same problem of estimating unobservable car-

diovascular characteristics from measurable hemodynamic signals. The Bayesian network

structure developed by Roberts is shown in Figure 3-1. Following the notational convention

of HMMs, the shaded nodes are observed and the white nodes are unobserved. Thus, in

addition to CO, TPR and SV are also estimated. All the nodes are discrete and have sample

spaces of size 5.

Roberts used the same MIMIC II data set described in Section 3.2 for training and

testing her network. In her error analysis, Liljestrand's estimate of CO was used as the

"true" CO value [25]. The true SV and TPR were calculated using Liljestrand's CO and

Equations 3.1 and 3.2, respectively. Porcine data was not used in that study.



Figure 3-1: Bayesian network from Roberts et al [3]. The shaded nodes are unobserved.
"HR" is heart rate, "CO" is cardiac output, "SV" is stroke volume, "TPR" is total periph-
eral resistance, and "ABP" is arterial blood pressure.

Two methods of parameter learning were explored in Roberts for determining the CPDs

of the Bayes net: batch learning and sequential learning. Both methods employ the the-

ory presented in Sections 2.1.2 and 2.1.3 in that the training data was used to increment

the Dirichlet hyperparameters of each CPD. In both methods, the Dirichlet priors were

initialized to be uniform.

In batch learning, the network was trained using all 1351 thermodilution CO measure-

ments, their concurrent measurements for ABP and HR, and the calculated values for SV

and TPR (again using Equations 3.1 and 3.2). Since the 1351 sets of points are taken

across all 120 patients, they represent the physiological behavior of the "general popula-

tion". However, these points do not capture any kind of temporal relationships between the

variables.

This network was tested on one particular patient by producing estimates of CO, SV,

and TPR at each time point, given concurrent measurements of ABP and HR. It is evident

from the resulting plot, shown in Figure 3-2, that this method fails to capture the desired

relationships between model variables.

In sequential learning, the network CPDs were computed from data ranging from time

t - N to t from one particular patient, and used to estimate that patient's CO, TPR, and

SV at time t + 1. The Dirichlet priors were once again initialized to be uniform, and ABP

and HR values at time t + 1 were given as evidence. This process was repeated along the

entire length of the data, creating a time series for CO, TPR, and SV. Figure 3-3 shows

the resulting plot. The low errors produced by this method are somewhat misleading; since

there is such little variability in the MIMIC II data, a simple sample-and-hold of the last



training point produces estimates of comparable quality.

C
0

5
0.

WJ
Time in Minutes

Figure 3-2: The results of batch training, taken from Roberts [4]. Shown in blue are the
"true" values of CO, TPR, and SV derived from Liljestrand's method. Shown in green are
the quantized versions of the blue waveforms. The red and cyan plots are the Bayesian
network MMSE and MAP estimates, respectively.
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Figure 3-3: The results of sequential training, taken from Roberts [4]. Shown in blue are the
"true" values of CO, TPR, and SV derived from Liljestrand's method. Shown in green are
the quantized versions of the blue waveforms, and shown in red are the Bayesian network
MMSE estimates. The training window size N is 90 minutes.
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3.4.2 Current Models and Results

The first alteration that we made to the approach presented in Roberts is to eliminate the

SV and TPR nodes in Figure 3-1. Not only are SV and TPR never observed in the data,

they are deterministically related to HR, ABP, and CO via Equations 3.1 and 3.2. Thus,

they do not add any value to the modeling problem. The new network is shown in Figure

3-4. Its structure was chosen to be as general as possible; we do not assume independence

between any of the variables. Since this network is so small, there is no need to reduce its

structural complexity for computational purposes.

Figure 3-4: Current static Bayesian network model.

The second alteration that we made to Roberts' approach is to focus on batch learning

rather than sequential learning. In a realistic setting, it is unlikely that a training value for

CO (or another unobservable variable) will be consistently available shortly before the time

of estimation.

With batch learning, a network is used to estimate a particular patient's unobservable

physiological parameters based on what is known about the general population. However,

rather than using the set of thermodilution points for training like in Figure 3-2, we turned

to porcine data that contain continuous true measurements of CO. We computed the CPDs

of the Bayes net from concurrent measurements of ABP, HR, and CO from four of the five

animals. The data was sampled at approximately half-minute intervals to be closer to the

time scale of physiological change, rather than that of noise, and quantized into 35 bins.

The sampling interval and quantization levels are kept constant throughout the rest of this

chapter, so that valid comparisons can be made between the different networks.



Once the CPDs were learned, the Bayesian network was given ABP and HR values from

the fifth swine, referred to as "Pig 9" in Mukkamala et al. [22], and inference via the junction

tree algorithm was performed to obtain the PMF of CO. From this distribution, the MAP

value for CO was found for each ABP and HR pair. We do not use the MMSE estimate

because it is not guaranteed to be discrete; it makes more sense to compare consistently

quantized waveforms when doing error analysis than to compare a discrete waveform with

a continuous one.

Figure 3-5 shows the Bayesian network results for Pig 9. The estimated values track the

measured values quite nicely for the first 30 minutes, indicating that the network is capable

of determining the baseline CO value for Pig 9 without any knowledge of its actual CO

behavior - not even a calibration factor. However, the quality of the estimates decreases

when the data fluctuates outside the nominal CO range. These fluctuations are due to the

experimental interventions that were performed on the swine. Since all the animals were

stimulated using different combinations of drugs and procedures (such as hemorrhaging),

the training data for CO outside the nominal range is sufficiently different from the test

data that large errors are produced.

Similarly for the MIMIC II data set, we tested the network on one randomly chosen

subject, and trained with the remaining 119 subjects. Figure 3-6 shows the results for

Patient b68062. Figure 3-7 shows the same plot, but zoomed in to the physiological range

of CO. Again, without any information on the CO behavior of this specific patient, the

Bayes net is able to produce estimates that on average track the true values.

In order to compare the different models that are introduced throughout this chapter,

we use two criteria to quantify error: mean absolute normalized error (MANE) and root

mean square normalized error (RMSNE). They are defined as follows:

MANE -1 n Truei - Esti (33)MANE = Tr (3.3)
n Truei

1 n True - Est2 (3.4)
in Truej

We use MANE in addition to RMSNE because RMSNE penalizes heavily for singular

occurrences of large error. However, since our waveforms are quantized into nonuniform



bins (the bins at extreme values are larger) and we use the midpoints of those bins for

calculating error (to preserve the measurement units), we expect to see larger errors at

extreme values, and do not want to bias our calculations unfairly based on that. In general,

normalized errors larger than 1 are considered to be bad.
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Figure 3-5: Estimated CO for Pig 9 using the current static Bayes net is shown in red.
Experimentally measured CO is shown in blue. The MANE is 0.63 and the RMSNE is 1.80.
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Figure 3-6: Estimated CO for Patient b68062 using the current static Bayes net is shown
in red. Parlikar's CO estimates are shown in blue. The MANE is 0.72 and the RMSNE is
1.09.
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Figure 3-7: Magnified version of Figure 3-6 showing only CO that is in the physiological
range.
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3.5 Hidden Markov Models

In this section, we present the results of CO estimation using various types of HMMs for both

the porcine and MIMIC II data sets. In addition, we show estimates of CO obtained from

established deterministic methods that employ the same variables. We move from using

static networks to dynamic networks in order to better capture the temporal correlations in

the data. As in the previous section, Pig 9 and Patient b68062 were used for testing, and

the remaining four pigs and 119 patients were used for training.

3.5.1 Single-Chain HMM

One of the simplest dynamic probabilistic networks that can be used is a standard single-

chain HMM relating CO and HR, as shown in Figure 3-8. The transition and emission

matrices were obtained from the training set and an initial uniform prior, and the most

likely CO sequence was calculated using the Viterbi algorithm. The results for Pig 9 and

Patient b68062 are shown in Figures 3-9 and 3-10, respectively. Also plotted for comparison

are CO estimates calculated from the following simple deterministic method, as described

in Parlikar [24]:

COest = k. HR, (3.5)

where k is a constant calibration factor that is equal to the ratio of the mean CO of the

training data to the mean HR of the training data.

The HMM estimate for Pig 9 nicely captures the increase and decrease in CO at around

the 35 and 65 minute marks, respectively. However, the transient fluctuations in the data

are barely picked up at all. In addition, the estimated waveform flattens out at the end

of the plot, while the true value dips down. This suggests that the model might be too

simple, since the decrease in CO is not reflected in the HR evidence. Incorporating more

input variables into the network would help remedy this problem.

Surprisingly, a simple scaling of HR also performs quite well as a CO estimator. This

means that SV stays fairly constant across all the data. Notice that the estimated CO

waveform is not exactly a scaled version of the HR evidence; this is because the scaling was

done on the continuous waveforms prior to quantization.

In the case of patient data, the HMM performs terribly. Large artifacts in the training

data and HR evidence caused our estimate to jump to values that are not physiologically



possible. Processing the data to remove such obvious artifacts beforehand would surely

improve the HMM's performance, and is suggested for future work.

A constant scaling of HR does a decent job of tracking the CO for this patient, except

for a persistent offset that actually contributes significantly to the error criteria. However,

since there is so little variability in the patient data, it is not surprising that such a method

works.

00a OSS

Figure 3-8: Single-chain HMM.
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Figure 3-9: Estimated CO for Pig 9 using a single-chain HMM is shown in the second
panel in red. Estimated CO obtained from Equation 3.5 is shown in the third panel in red.
Experimentally measured CO is shown in blue. The observed sequence of HR is shown in
the first panel. In the second panel, the MANE is 0.58 and the RMSNE is 1.96. In the
third panel, the MANE is 0.61 and the RMSNE is 1.76.
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Figure 3-10: Estimated CO for Patient b68062 using a single chain HMM is shown in the
second panel in red. Estimated CO obtained from Equation 3.5 is shown in the third panel
in red. Parlikar's CO estimates are shown in blue. The observed sequence of HR is shown
in the first panel. In the second panel, the MANE is 5.08 and the RMSNE is 6.07. In the
third panel, the MANE is 1.11 and the RMSNE is 1.22.
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Figure 3-11: Magnified version of Figure 3-10 showing only CO that is in the physiological
range.



3.5.2 Multiple Output HMM

A slightly more complex HMM model is one that also incorporates drug information.

Figure 3-12 shows a HMM where CO is the hidden state, and HR and Dobutamine are

both emitted symbols. The Dobutamine node is binary and indicates the time period

during which the drug was being infused. The results of using this network on Pig 9 is

shown in Figure 3-13. We do not apply this model to the MIMIC II data because patient

medication records were difficult to extract, as previously mentioned.

The estimated waveform produced by this network is essentially the same as the one

obtained from a single-chain HMM, suggesting that information on Dobutamine adminis-

tration does not add value to the model.

0 * 0 0 .

Figure 3-12: Multiple output HMM with hidden state CO, and emissions HR and Dobu-
tamine.
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Figure 3-13: Estimated CO for Pig 9 using a multiple output HMM is shown in the third
panel in red. The first panel again shows the observed sequence of HR. The second panel
shows the periods of Dobutamine infusion. The MANE is 0.60 and the RMSNE is 1.97.
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3.5.3 Autoregressive HMM

Since HR is clearly itself a random process with temporal correlations, the next step we

take is to fit our data onto an autoregressive HMM. Figure 3-14 shows the network structure,

and Figures 3-15 and 3-16 show the results for .Pig 9 and Patient b68062, respectively.

The autoregressive HMM results for both Pig 9 and Patient b68062 differ minimally

from the results obtained from a single-chain HMM, suggesting again that the relationship

between HR and CO is dominant compared to other correlations in the data.

COregressive HMM relating CO and HR.

Figure 3-14: Autoregressive HMM relating CO and HR.
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Figure 3-15: Estimated CO for Pig 9 using an autoregressive HMM. The MANE is 0.52
and the RMSNE is 1.54.
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Figure 3-16: Estimated CO for
is 3.63 and the RMSNE is 4.76.
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Figure 3-17: Magnified version of Figure 3-16 showing only CO that is in the physiological
range.
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3.6 Dynamic Bayesian Network Models

Lastly, we present the results obtained from DBNs. Although the networks in this section

do not seem to differ much from the HMMs presented previously, there is in fact a significant

jump in generality between the two methods. This is because the implementations of HMM

models all use some variation of the Viterbi algorithm, which requires a particular network

structure. In contrast, the DBNs in this section use the junction tree algorithm for inference.

Thus, these models can be expanded to arbitrary complexity, although computation time

and space remain a limiting factor.

3.6.1 Prior Work and Results

A prior study that explored the use of DBNs in the estimation of cardiovascular variables

is J. Hulst's Master of Science thesis [5]. In it, he develops the DBN shown in Figure

3-18, and uses it to infer unobservable variables of interest before and after the onset of

cardiogenic shock - a low blood pressure condition that results from heart failure. Since

his DBN is quite involved and contains many physiological variables that are realistically

unmeasurable, only simulated data was used to validate the model. Cardiogenic shock

was simulated by abruptly decreasing the maximum elastance of the left ventricle. The

evidential nodes are HR, systolic, and diastolic arterial blood pressure; all the other nodes

were unobserved. Figure 3-19 shows the results given by Hulst. It is evident that the DBN

performs very well, as the onset of shock is is clearly captured by the binary shock decision

variable. However, it is important to note that the network was trained and tested on

simulated data that were all perturbed in the same manner. It is unclear how well it would

perform with experimental data.



Figure 3-18: DBN model of the cardiovascular system as presented in Hulst [5]. CA is
cardiac output, EF is ejection fraction, Eml, is maximum elastance of the left ventricle, PP,
is the pressure in the left ventricle, Psa is the pressure in the systemic arteries, VV, is the
volume of the left ventricle, and the R's are resistances of various parts of the circulation.
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Figure 3-19: Shown in (a) is the CO estimate of a particular simulation, as presented in
Hulst [5]. The perturbation of the elastance variable is shown in (b); this is done to simulate
cardiogenic shock. Panel (c) shows the binary shock variable itself.
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3.6.2 Current Models and Results

The first DBN that was tried is shown in Figure 3-20, where now both HR and ABP

are evidential nodes. We once again sample both data sets at approximately half-minute

intervals, and quantize the waveforms into 35 bins. The resulting estimates for Pig 9 and

Patient b68062 are shown in Figures 3-22 and 3-24, respectively. For comparison, CO

estimates calculated from the following equation [24] are also shown:

COest = k -HR -ABP, (3.6)

where k is a constant calibration factor that is equal to the ratio of the mean CO of the

training data to the mean of the product of HR and ABP of the training data.

The estimated waveforms here are very similar to those obtained from a static Bayesian

network, suggesting that ABP contributes significant information to the model. The tem-

poral contributions of the DBN are particularly noticeable in the first 30 minutes of the Pig

9 plot; the DBN estimate is less sensitive to fluctuations in the input signals than the static

Bayes net estimate. The simple scaling method also works well here, especially since large

spikes in the data often occur concurrently across all three variables, and are thus picked

up nicely by a scaling estimate.
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Figure 3-20: DBN relating CO, ABP, and HR. CO is a query node, and ABP and HR are
evidential nodes.

Slightly modifying this model to also include drug information leads to the network in

Figure 3-26. The evidence supplied to this DBN is shown in Figure 3-27, and the resulting

estimated CO is shown in Figure 3-28. Once again, since the MIMIC II database does

not have easily extractable medication records, only porcine results are given. The three
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Figure 3-21: The observed sequences of HR and ABP that were used to obtain the CO
estimates shown in Figure 3-22.
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Figure 3-22: Estimated CO for Pig 9 using the DBN in Figure 3-20 is shown in the top
panel in red. Estimated CO obtained from Equation 3.6 is shown in the bottom panel in
red. Experimentally measured CO is shown in blue. In the top panel, the MANE is 0.61
and the RMSNE is 2.20. In the bottom panel, the MANE is 0.43 and the RMSNE is 1.06.
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Figure 3-23: The observed sequences of HR and ABP that were used to obtain the CO
estimates shown in Figure 3-24.
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Figure 3-24: Estimated CO for Patient b68062 using the DBN in Figure 3-20 is shown in
the top panel in red. Estimated CO obtained from Equation 3.6 is shown in the bottom
panel in red. Parlikar's CO estimate is shown in blue. In the top panel, the MANE is 0.79
and the RMSNE is 1.25. In the bottom panel, the MANE is 1.17 and the RMSNE is 1.25.
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Figure 3-25: Magnified version of Figure 3-24 showing only CO that is in the physiological
range.

drugs that we account for are Dobutamine, Esmolol, and Nitroglycerin, although others

were given as well.

Once again, the incorporation of drug information does not significantly improve the

quality of the estimates, although the errors do go down. In future work, one could consider

using the actual dosages, rather than just a binary variable for the drugs.

· ·

000

000

000

Figure 3-26: DBN relating CO, ABP, HR, and infusions of Esmolol, Dobutamine, and
Nitroglycerin.
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Figure 3-27: Evidence supplied to the DBN in Figure 3-26 to obtain the results shown in
Figure 3-28. Nitroglycerin was actually not administered to Pig 9, but was given to the
other animals.
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3.7 Discussion of Results

The errors from applying each method presented in this chapter to Pig 9 and Patient b68062

are summarized in Tables 3.1 and 3.2, respectively. There is no clear pattern in the results

for Pig 9, but it is clear from Patient b68062's results that ABP is a very important variable

to consider when estimating CO. As for comparing the performance of our networks with

that of deterministic scaling methods, the errors are in the same ball park.

In order to obtain more representative errors for the entire data set, we test our network

models on 12 randomly chosen patients from the MIMIC II database, after training the

networks on the other 108 patients. These results are stated in Table 3.3. We do not repeat

this analysis for the porcine data set because it is too small. The mean errors once again

suggest that ABP is a critically important variable to consider, much more so than the

temporal correlations in the data.

We also point out that the quality of the estimates varies a great deal between subjects.

For the 12 patients in Table 3.3, the DBN MANE values range from 0.25 to 1.00. This

suggests that the training data may not be rich enough, since large errors often occur

when certain outcome combinations are not encountered during parameter learning. Using

training data with higher variability, or intelligently choosing the CPD priors, would aid in

forming more robust networks, and consequently, in producing more consistent results.

Model Evidence Variables MANE RMSNE
Static Bayes Net HR, ABP 0.63 1.80
Single Chain HMM HR 0.58 1.96
Multiple Output HMM HR, DBM 0.60 1.97
Autoregressive HMM HR 0.52 1.54
DBN HR, ABP 0.61 2.20
DBN with Medications HR, ABP, DBM, ESM, NTR 0.59 1.88
k-HR HR 0.61 1.76
k-HR-ABP HR, ABP 0.43 1.06

Table 3.1: Summary of results for Pig 9.



Model Evidence Variables MANE RMSNE
Static Bayes Net HR, ABP 0.72 1.09
Single Chain HMM HR 5.08 6.07
Autoregressive HMM HR 3.63 4.76
DBN HR, ABP 0.79 1.25
k.HR HR 1.11 1.22
k-HR-ABP HR, ABP 1.17 1.25

Table 3.2: Summary of results for Patient b68062.

Patient No. Static BN S.C. HMM A.R. HMM DBN k-HR k.HR-ABP
b71758 0.18 1.49 1.88 0.63 0.16 0.15
b65508 0.47 0.73 1.60 0.48 0.34 0.49
b67092 0.57 0.88 1.36 0.66 0.51 0.53
b61862 0.83 4.87 2.68 1.00 1.09 1.22
b68134 0.46 1.57 1.63 0.56 0.26 0.31
b61947 0.55 1.27 1.32 0.72 0.42 0.44
b60734 0.30 0.76 2.32 0.25 0.29 0.23
b62761 0.29 1.91 2.92 0.38 0.33 0.27
b70776 0.26 0.57 2.04 0.38 0.14 0.30
b73616 0.35 1.14 1.69 0.65 0.17 0.22
b73687 0.30 2.04 2.19 0.39 0.16 0.16
b74034 0.59 1.79 3.49 0.79 0.66 0.82

Min Error 0.18 0.57 1.32 0.25 0.14 0.15
Max Error 0.83 4.87 3.49 1.00 1.09 1.22
Mean Error 0.43 1.58 2.09 0.57 0.38 0.43

Table 3.3: Comparison of MANE in MIMIC II
Figures 3-4, 3-8, 3-14, and 3-20, respectively.

data. The networks used here are shown in



Chapter 4

Conclusion

4.1 Summary

In this thesis, we presented probabilistic networks as a method for capturing physiological

correlations in the parameters of the cardiovascular system.

In particular, Chapter 2 summarized in a unifying manner the theory behind three types

of probabilistic networks: Bayes nets, HMMs, and DBNs. The semantics of each type of

network was defined, and methods for parameter learning and probabilistic inference were

explained. We hope that this chapter can serve as a self-contained tutorial for anyone

interested in learning about this topic.

In Chapter 3, we developed several networks, with varying degrees of complexity, for

computing time series estimates of CO. We tested the networks on both a set of experimental

porcine data and a set of real ICU patient data. We found that ABP and HR are critical

evidence nodes for CO estimation, and that models with higher complexity were more

capable of following rapid fluctuations in the data than simpler models with only one input

variable. We also compared the results of our networks with those calculated using a simple

scaling method, and found that the errors were comparable.

The primary contributions of this thesis were to provide a detailed explanation of prob-

abilistic networks as a modeling technique, and to demonstrate their performance on real

data. Although these networks did not significantly outperform simpler, physiologically-

based formulas for estimating CO, it is a purely statistical framework that holds great

promise in applications where good deterministic models do not yet exist.



4.2 Future Work

A natural extension of the work presented in this thesis is to explore more complex network

models of the cardiovascular system. Such networks could include additional variables,

such as electrocardiogram readings and lab results, or higher order temporal correlations.

Additional exploration of parameters, such as the sampling rate and number of quantization

levels, would also be beneficial.

Another topic that could yield interesting results is parameter learning with missing

data. It is often unrealistic to ask for a complete set of training data, as values for variables

such as CO are frequently missing. Training the networks with missing data, which involves

using the expectation maximization (EM) algorithm, could be a possible solution.

A topic that is related to missing data is the use of informative priors. In this thesis,

we always initialized the network CPDs with uniform prior distributions. If the data set is

sparse, or contains missing data, then it is critically important that a good prior is chosen.

Lastly, it would be highly advantageous to explore these networks in the context of larger,

richer data sets, which are admittedly hard to come by. Databases that are differentiated

by certain diseases or conditions would be especially interesting and helpful.
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