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Abstract

In a critical care setting, shock and resuscitation end-
points are often defined based on arterial blood pressure
values. Patient-specific fluctuations and interactions be-
tween heart rate (HR) and blood pressure (BP), however,
may provide additional prognostic value to stratify individ-
ual patients’ risks for adverse outcomes at different blood
pressure targets. In this work, we use the switching autore-
gressive (SVAR) dynamics inferred from the multivariate
vital sign time series to stratify mortality risks of intensive
care units (ICUs) patients receiving vasopressor treatment.
We model vital sign observations as generated from latent
states from an autoregressive Hidden Markov Model (AR-
HMM) process, and use the proportion of time patients
stayed in different latent states to predict outcome. We
evaluate the performance of our approach using minute-
by-minute HR and mean arterial BP (MAP) of an ICU
patient cohort while on vasopressor treatment. Our re-
sults indicate that the bivariate HR/MAP dynamics (AUC
0.74 [0.64, 0.84]) contain additional prognostic informa-
tion beyond the MAP values (AUC 0.53 [0.42, 0.63]) in
mortality prediction. Further, HR/MAP dynamics achieved
better performance among a subgroup of patients in a low
MAP range (median MAP < 65 mmHg) while on pressors.
A realtime implementation of our approach may provide
clinicians a tool to quantify the effectiveness of interven-
tions and to inform treatment decisions.

1. Introduction

Patients in the intensive care units (ICUs) are critically
ill and physiologically unstable, requiring constant moni-
toring in their vital sign signals, such as heart rate (HR) and
blood pressure (BP). Arterial blood pressure, in particu-
lar, is closely monitored for patients who are hemodynam-
ically unstable. When patients’ mean arterial blood pres-
sure (MAP) values fall below a critical threshold, imme-
diate medical attention is required; fluid resuscitation and
vasopressor treatment are administered to bring patients’
blood pressure back to a normal range. Surviving sepsis
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campaign, for example, recommends targeting a mean ar-
terial blood pressure of at least 65 mmHg [1].

While clinicians often adopt specific blood pressure tar-
get for diagnosis and treatment strategies (e.g., titration of
pressor dosage), tracking the patient-specific fluctuations
and interaction between heart rate (HR) and blood pres-
sure (BP) may provide additional insights on physiologi-
cal states of a patient. In this work, we use switching au-
toregressive dynamics of vital sign time series to stratify
mortality risk of patients at different blood pressure levels
while on vasopressor treatment. The underlying premise of
our approach is that subtle changes in the dynamics of vital
sign time series reflect patients’ hemodynamic responses
to the vasopressor treatment, and therefore can potentially
provide prognostic information for outcome prediction.

A framework based on autoregressive Hidden Markov
Model (AR-HMM) process [2], or switching autoregres-
sive (SVAR) process, was adopted to discover the shared
dynamic behaviors exhibited in HR/BP time series of a pa-
tient cohort. Specifically, we model observations as gener-
ated from a latent state space of an HMM; each latent state
characterizes observations as a linear dynamical system (or
dynamic mode), parameterized by an autoregressive pro-
cess. Our previous work demonstrated the utility of such
a framework in discovering dynamic behaviors with prog-
nostic values in predicting hospital mortality[3].

In this work, we used the proportion of time patients
stayed in different latent states to predict mortality risks of
patients at different blood pressure levels while on vaso-
pressor treatment. We evaluated the classification perfor-
mance of our approach using minute-by-minute HR and
BP time series from a cohort of ICU patients in the MIMIC
II database [4]

2. Materials and Methods

This study utilized data from 453 ICU patients from the
MIMIC II waveform database (version 2), with at least 8
hours of continuous HR and BP measurements during the
first 24 hours in the ICU. Approximately 15% (67 out of
453) of patients in this cohort died in the hospital. Analysis
focused on a subgroup of 224 patients with at least 3 hours
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Figure 1. Example high-risk (1 and 9) vs. low-risk (7 and 15) dynamic modes with prognostic information among patients

on pressors.

of pressor treatment (levophed, neo-synephrine, dopamine,
epinephrine, vasopressin) during the first 24 hours in the
ICUs were used for the analysis. The median/IQR number
of hours on pressors during the first day in the ICU were
17.4 [12.3, 20.5] hours for this cohort. The hospital mor-
tality is 15% (34 out of 224 died before hospital discharge).

We employed a switching vector autoregressive process
framework to model physiological time series via Markov
transitions between a collection of simpler linear dynami-
cal systems [2]. For the n-th patient (n = 1--- N), let y§">
be a M x 1 vector of observed values of the vital signs at
timet(t = 1-- ~T(")). We assume that there exists a li-
brary of K possible dynamics or modes, a set of multivari-
ate autoregressive model coefficient matrices {A](gk)}kK:1
of size M x M, with maximal time lagp = 1--- P, and
the corresponding noise covariances {Q*) M . Let s, be
a switching variable, indicating the active dynamic mode
at time ¢, and evolving according to a Markovian dynamic
with initial distribution (") and a K x K transition ma-
trix Z. Following these definitions, an AR-HMM is de-

fined by y; = 25:1 Az(,zt)yt_p +Q®*). A collection of re-
lated time series can be modeled as switching among these
dynamic behaviors which describe a locally coherent lin-
ear model that persists over a segment of time. Minute-by-
minute HR and mean arterial blood pressure (MAP) time
series from MIMIC II were modeled as a switching AR(5)

process with 25 modes.

We characterized each time series with the proportion
of time in different dynamic modes. A logistic regression
classifier (with Lasso regularization) was used to predict
hospital mortality using mode proportions from the top 20
most common dynamic modes as features. We report 10-
fold cross validated AUCs and 95% confidence intervals
[5]. For subgroup analysis with cohort size N < 50, fea-
tures were from the top 10 modes, and performance was
based on leave-one-out cross validation. Modes were char-
acterized as high-risk vs. low-risk modes based on odds
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ratios from logistic regression analysis. Odds ratios (OR)
and their 95% confidence intervals were reported.

3. Results

3.1. Dynamic Modes with Prognostic Value

at Different BP Ranges

Figure 1 shows example high-risk (1 and 9) vs. low-
risk (7 and 15) dynamic modes with prognostic informa-
tion among patients on pressors. Applying univariate lo-
gistic regression on the entire 224 patient cohort (regard-
less of their MAP levels), high-risk mode 1 (p < 0.001,
OR 1.44 [1.16, 1.78]) and low-risk mode 15 (p < 0.01, OR
0.01 [0.00, 0.21]) are significantly associated with hospital
mortality. Note that the high-risk modes often correspond
to less variable dynamical patterns.

We then performed a sub-group analysis to identify dy-
namic modes with prognostic values for patients at dif-
ferent MAP ranges. Our results indicate that when me-
dian MAP < 65 mmHg (N=21, mortality 33%), high-risk
modes 1, 9 and low-risk mode 24 achieved (leave-one-
out) cross validated AUC of 0.72, 0.69, 0.77 respectively.
When median MAP is in the range of [65, 75) mmHg,
mode 6 has the highest predictive performance, achieving
an AUC of 0.66. When median MAP > 75 mmHg while
on pressors, mode 12 alone achieved an AUC of 0.62 using
10-fold cross validation.

3.2,

Bivariate HR/MAP Dynamics: Sur-

vivors vs. Non-Survivors

Figure 2 (a) shows the median MAP distribution of the
survivors vs the non-survivors while on pressors. Note that
the two groups have similar MAP distributions. Popula-
tion median/IQR for the non-survivors and survivors are
73 [66, 78] mmHg and 72 [68, 76] mmHg respectively.
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Figure 2. Comparison between survivors vs. non-survivors. Figure (a) shows distribution of median MAP while patients
were on pressors (N=224). Median MAP distributions of the survivors vs. the non-survivors are not statistically different
based on the ranksum test. Figure (b) plots the standard deviation and median MAP of patients in the hypotensive subgroup
(median MAP < 65 mmHg while on pressors), N=21. Figure (c) plots mode proportions of HR/MAP dynamics of patients
of the same hypotensive subgroup while on pressors, N=21.

The differences are not statistically significant (p = 0.73).

Figure 2 (b) shows the median and standard deviation
of MAP for 21 patients with median MAP < 65mmHg
while on pressors. Figure 2 (c) shows the dynamic mode
proportions for the same 21 patients with median MAP <
65mmHg while on pressors; the high-risk (x-axis) and low-
risk mode proportions are calculated from summing over
the mode proportions from the top ten modes with smallest
p-values in univariate logistic regression analysis. Note
the separation between the survivors and non-survivors in
their mode proportions: the non-survivors tended to spend
more time in the high-risk dynamics rather than the low-
risk modes, whereas the survivors spent more time in the
low-risk dynamics.

3.3. Prediction Performance

Table 1 summarizes the prediction performance. Within
the pressor subgroup, the bi-variate HR/BP dynamics
alone achieved an AUC of 0.74 (95% confidence inter-
val of 0.64, 0.84), out-performing the baseline median
MAP performance, 0.53 (0.42 to 0.63). Bivariate dy-
namics of HR/MAP time series combined with the me-
dian MAP levels, achieved an AUC of 0.75 (0.65 to 0.85).
Pressure-dependent analysis for pressor subgroups A and
B are based on blood pressure samples while patients are
on pressors. Bivariate HR/MAP dynamics perform bet-
ter among the hypotensive subgroup (median MAP < 65
mmHg), achieving an AUC of 0.83 [0.63, 1.00].
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Figure 3. Survivors vs. Non-survivors: changes in mode
proportions (population median) for high-risk mode 1 be-
fore and after pressor onset.

3.4. Comparison of Dynamics Before and

After Pressor Onset

In this section, we compare HR/MAP dynamics of the
survivors and the non-survivors before and after pressor
initiation. We focused on 55 patients with at least 30 min-
utes of MAP before pressor onset; 11 of the 55 patients
died (mortality 20%). The median number of HR/MAP
minute-by-minute samples available for analysis before
pressor onset was 164 (or approximately 2.7 hours). Fig-
ure 3 shows the population median of mode proportion
for high-risk dynamic mode 1 before and after the pres-
sor onset. The survivor group spent less than 1% of their
time (median 0.7% [0.2%, 2.8%]) in the high-risk mode
before pressor onset, and increased to 3% [0.5%, 14%] af-
terwards. Non-survivors spent a larger proportion of time



| Features \ Cohort (Subgroup) | N [ Mortality | AUC
STD MAP + Median MAP Level All 453 15% 0.52 [0.44, 0.59]
HR/MAP Dynamics All 453 15% 0.68 [0.60, 0.75]
Median MAP level Pressor 224 15% 0.5310.42, 0.63]
STD MAP Pressor 224 15% 0.53 [0.43, 0.64]
Median + STD MAP Pressor 224 15% 0.58 [0.47, 0.68]
HR/MAP Dynamics Pressor 224 15% 0.74 [0.64, 0.84]
HR/MAP Dynamics + MAP Pressor 224 15% 0.75 [0.65, 0.85]
HR/MAP Dynamics Pressor Group A (MAP < 65 mmHg) 21 33% 0.83 [0.63, 1.00]
HR/MAP Dynamics Pressor Group B (MAP [65, 75) mmHg) | 131 9% 0.76 [0.59, 0.92]

Table 1. Classification performance in predicting hospital mortality in ICU patients using bi-variate HR/MAP dynamics.
The pressor group consists of patients on pressor treatment for at least 3 hours during the first 24 hours in the ICU. AUCs
and 95% confidence intervals are shown. Pressor group A and B are defined based on median MAP at different thresholds.

(5% [1.8%, 26%]) in the high-risk mode 1 than survivors
even before the pressor onset; after the pressor initiation,
their proportion of time in high-risk mode 1 increased sig-
nificantly to 15.6% [6.7%, 37.7%].

4. Discussion and Conclusions

Our results indicate that HR/MAP dynamics contain
prognostic information, especially in the low BP range
(median MAP < 75 mmHg), and can potentially be used
to stratify individual patients’ risks for adverse outcomes
at different blood pressure targets. One potential appli-
cation of our technique is in patient monitoring, where
transitions to high risk dynamical modes could be used
to trigger alarms. Recent studies suggest that therapeu-
tic interventions not only should aim at maintaining the
mean BP within an acceptable range, but also should direct
the patients’ trajectory toward healthy dynamical regimes
with enhanced variability [6]. A real-time implementation
of our technique (e.g., reporting hourly risk scores as de-
scribed in [7]) may provide clinicians with a tool to quan-
tify the effectiveness of such interventions in the ICU. Fu-
ture work will extend analysis to stratify risks of other ad-
verse outcomes (e.g. acute kidney injuries) in response to
vasopressor treatment, and other interventions in the ICU
(such as fluid resuscitation, and ventilation settings). Ul-
timately, our goal is to provide clinicians a tool to inform
treatment strategies by combining the dynamics in high-
resolution vital sign time series with all other available
physiological and clinical data (lab tests, medication, nurs-
ing notes, etc.).
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