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Abstract

Vital-sign time series of heart rate (HR) and blood pres-
sure (BP) exhibit complex patterns of fluctuations, reflect-
ing the underlying pathological and physiological states
of patients. In this work, we adopt a switching vector au-
toregressive process framework to learn a shared global
library of “phenotypic” vital-sign dynamical behaviors
from HR and BP time series of a patient cohort. Using
HR and BP time series of over 450 adult ICU patients,
we demonstrate that the fluctuation patterns in HR and BP
are significantly correlated with several laboratory mea-
surements routinely monitored in the ICU, and can poten-
tially be used to reveal the underlying patho-physiological
states of the patients. We demonstrate that the bivariate
dynamics of HR/BP alone achieve similar performance in
sepsis detection in comparison to the SAPS I scores, which
use age and the most extreme values of 13 physiological
variables. Further, combining the bivariate dynamics of
HR/MAP time series and SAPS I provides a significantly
more accurate (p=0.02) assessment of patients’ risks in
sepsis than using SAPS I alone (AUC 0.70 [0.63, 0.78] vs
0.78 [0.70, 0.85]), suggesting that the dynamics of the in-
teraction between HR and BP may contain additional pre-
dictive value beyond that contained in the SAPS I scores.

1. Introduction

Vital sign time series of heart rate (HR) and blood pres-
sure (BP) can exhibit complex dynamical patterns as a re-
sult of internally and externally-induced changes in the
state of the underlying control system. Understanding
these dynamical behaviors is both of physiological and
clinical importance, and can potentially yield insights into
the disease process of patients. In this work, we use a
switching vector autoregressive process (SVAR) frame-
work to systematically discover “phenotypic” dynamic be-
haviors shared across multivariate vital sign time series of
a patient cohort. We model the changing dynamics of non-
linear and non-stationary vital sign time series via Markov
transitions among a collection of simpler linear dynamical
systems (or modes). Our previous work has demonstrated
the utility of such a framework in discovering dynamic be-

haviors with prognostic values in hospital mortality pre-
diction [1].

In this paper, we adopt a data-driven approach to explore
the physiological and clinical significance of the discov-
ered dynamic behaviors. Using minute-by-minute HR and
BP time series from a cohort of ICU patients in the MIMIC
II database [2], we investigate the correlations between dif-
ferent dynamic behaviors and a wide range of physiolog-
ical and lab variables routinely monitored in an ICU. Fi-
nally, we investigate the classification performance of our
approach in identifying patients with sepsis.

2. Materials and Methods

This study included 453 adult patients from the MIMIC
II waveform database (Version 2) [2] with clinical informa-
tion, and with at least eight hours of continuous minute-by-
minute HR and invasive BP measurements during the first
24 hours of their ICU stays. Approximately 15% (67 out
of 453) of patients in this cohort died in the hospital.

We employed a switching vector autoregressive pro-
cesses framework to model physiological time series via
Markov transitions between a collection of simpler linear
dynamical systems [3]. For the n-th patient (n = 1 · · ·N ),
let y(n)

t be a M × 1 vector of observed values of the
vital signs at time t (t = 1 · · ·T (n)). We assume that
there exists a library of K possible dynamics or modes,
a set of multivariate autoregressive model coefficient ma-
trices {A(k)

p }Kk=1 of size M × M , with maximal time
lag p = 1 · · ·P , and the corresponding noise covariances
{Q(k)}Kk=1. Let st be a switching variable, indicating the
active dynamic mode at time t, and evolving according
to a Markovian dynamic with initial distribution π(n) and
a K ×K transition matrix Z. Following these definitions,
an AR-HMM is defined by yt =

∑P
p=1A

(zt)
p yt−p +Q(zt).

A collection of related time series can be modeled as
switching among these dynamic behaviors which describe
a locally coherent linear model that persists over a segment
of time.

Minute-by-minute HR and mean arterial blood pressure
(MAP) time series from MIMIC II were modeled as a
switching AR(3) process. The number of dynamic modes
(K=20) was determined using the Bayesian Information
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Figure 1. The top 10 MAP dynamic modes from the first 24-hours in the ICU grouped by their associations with hospital
mortality (N=453 patients). All modes were simulated from their AR coefficients and covariances, and plotted with the
same time duration (150 minutes) and amplitude scale ([-40, 40] centered around zero).
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(a)Correlation: MAP dynamics and physiological/lab variables
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(b)Significance (p <0.05 in gray/black)
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(c)Correlation: HR/MAP dynamics and physiological/lab variables
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Figure 2. Correlation between dynamic mode proportions and other physiological variables from the first 24-hours in the
ICU. Cr-creatinine, HCT-hematocrit, WBC-white count. In parts (b) and (d), p >= 0.05 are in white.

Criterion (BIC) [4]. We define a mode proportion MP
(n)
k

as the proportion of time the n-th patient spends within the
k-th mode [1]. We characterize each time series with its
corresponding mode proportion (a 1 ×K feature-vector),
and use a logistic regression classifier to make predictions
about the outcome variables of interest. Test of statistical
significance was based on p-values after correcting for the
false discovery rate [5]. Comparison of AUCs was based
on the method described in [6].

3. Results

Figure 1 shows the top ten most common MAP dy-
namic modes learned using the SVAR algorithm. Dynamic
modes are labeled as high-risk, low-risk, or neutral based
on their associations with hospital mortality from logis-
tic regression analysis (see [1]). Note that the high-risk
modes appear to contain less variability. To investigate
the clinical significance of different dynamic modes, we
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(a)Mode 2
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(b)Mode 9
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(c)Mode 7
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(d)Mode 8

Figure 3. Example HR (red) and MAP (blue) bivariate dynamic modes significantly associated with sepsis in the ICU.
Modes 2 and 9 are high-risk modes, and modes 7 and 8 are low-risk modes in sepsis. All modes were simulated from their
AR coefficients and covariances.

Mode P-Val OR(95%CI) Adjusted P-Val Adjusted OR(95%CI) HL PVAL
2 0.0000 1.52 (1.30 1.79) 0.0046 1.30 (1.08 1.55) 0.22
9 0.0085 2.14 (1.21 3.78) 0.5230 1.24 (0.64 2.43) 0.11
7 0.0006 0.20 (0.08 0.50) 0.0063 0.30 (0.13 0.71) 0.68
8 0.0068 0.38 (0.19 0.77) 0.1197 0.56 (0.27 1.16) 0.04
1 0.0525 1.26 (1.00 1.59) 0.0777 1.28 (0.97 1.67) 0.67
3 0.0527 1.33 (1.00 1.77) 0.4533 1.13 (0.82 1.55) 0.63
10 0.1396 0.56 (0.26 1.21) 0.0919 0.46 (0.18 1.14) 0.16
4 0.1876 0.87 (0.70 1.07) 0.5664 0.93 (0.73 1.19) 0.51
5 0.7003 1.07 (0.76 1.52) 0.6067 1.11 (0.74 1.66) 0.08
6 0.7312 1.07 (0.74 1.53) 0.4350 1.17 (0.79 1.75) 0.37

Table 1. Associations between the bivariate dynamics of HR/MAP and the risk of sepsis. In multivariate logistic regression
model (columns 4-6), we report the p-values and OR of the dynamic mode proportion variables after adjusting for APACHE
IV. The Hosmer-Lemeshow (HL) p values were reported to assess the model fit.

Features MAP Dynamics HR Dynamics HR/MAP Dynamics
Dynamics Only 0.67 (0.58, 0.74) 0.61 (0.58, 0.74) 0.70 (0.60, 0.84)
Dynamics + SAPS I 0.76 (0.69, 0.83) 0.67 (0.59, 0.75) 0.78 (0.70, 0.85)
Dynamics + APACHE IV 0.78 (0.71, 0.85) 0.78 (0.70, 0.85) 0.82 (0.75, 0.88)

Table 2. Classification performance in detecting sepsis in ICU patients using ten most common HR and MAP dynamics
from the first 24 hours in the ICU. AUCs (and 95% confidence intervals) are from 10-fold cross validation. The performance
of SAPS I and APACHE IV alone were 0.70 [0.63, 0.78] and 0.79 [0.72, 0.86] respectively.

display the correlation coefficients and p-values (p< 0.05)
between the proportion of time patients spent in different
MAP dynamic modes and patient age, daily lab measure-
ments, and other physiological variables from the first 24-
hours in the ICU (Figure 1 a, b). Overall, high-risk MAP
dynamic modes (3 and 5) are correlated with high heart
rate, high respiratory rate, and low systolic blood pressure,
which may be signs of hemodynamic instability. Modes
3 and 5 are also correlated with high lactate, creatinine,
BUN, and low urine output, suggesting potential end-organ
and tissue hypo-perfusion. High-risk mode 5 is signifi-
cantly correlated with a low pH, HCO3 (bicarbonate), in
addition to high lactate; it has a weak correlation with high
temperature, though the correlation is not significant. To-
gether, these signs point to a state of potential metabolic

acidosis or sepsis.

Low-risk MAP modes (1, 9, 7 and 2) are, in general, cor-
related with the same physiological variables as the high-
risk modes, though the correlations are in the opposite di-
rection. Notably, low-risk dynamic modes 1 and 2 are
correlated with lower heart rate, and higher systolic blood
pressure. All four low-risk modes are correlated with low
creatinine, and modes 9 and 7 are additionally correlated
with high urine output, typical of normal renal function.
All four low-risk modes are correlated with low lactate,
and modes 1 and 7 with high pH, an indication of likely
absence of metabolic acidosis.

In the bivariate HR/MAP case (Figure 1 c, d), note that
dynamic modes 2 and 9 are significantly correlated with
high respiratory rate, temperature, and heart rate, which
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point to symptoms related to systemic inflammatory re-
sponse syndrome (SIRS) [7]. Mode 2 is further correlated
with high creatinine and low urine output, which suggest
end-organ damage characteristic of patients with severe
sepsis [7, 8]. Table 1 summarizes the association anal-
ysis between the top ten most common bivariate HR/BP
dynamic modes and sepsis. We built a separate univari-
ate/multivariate logistic regression model for each of the
top ten most common dynamic modes. In the multivari-
ate case, the dynamic mode proportion was the primary
predictive variable, and APACHE IV was added as a co-
variate. Four of the modes (see Figure 3) had a significant
association with sepsis (p < 0.05): mode 2 and 9 (“high-
risk modes”) had odds ratios greater than 1.0 and therefore
were associated with an increased chance of sepsis; modes
7 and 8 (“low-risk modes”) had odds ratios less than 1.0
and thus were associated with a lower sepsis risk. The re-
sults presented in Table 1 indicate that even after adjust-
ment for APACHE IV, two modes (2 and 7) were signifi-
cantly associated with sepsis.

Table 2 displays the 10-fold cross-validated classifica-
tion performance in detecting sepsis. We report the area
under the receiver operating characteristic curve (AUC)
with 95% confidence intervals. Among the 453 patients,
62 (13.7%) had sepsis (as defined by Martin sepsis crite-
ria [8]). For sepsis detection, the bivariate dynamics of
HR/MAP achieved an AUC of 0.70 [0.60, 0.84] which is
comparable to the performance of SAPS I alone with an
AUC of 0.70 [0.63, 0.78]. Combining the bivariate dy-
namics of HR/MAP with SAPS I significantly (p=0.02)
improved the performance of SAPS I from an AUC of
0.70 [0.63, 0.78] to 0.78 [0.70, 0.85]. State-of-the-art
APACHE IV achieved an AUC of 0.79 [0.72, 0.86]. Com-
bining HR/MAP dynamics with APACHE IV improved the
APACHE IV performance slightly from 0.79 [0.72, 0.86]
to 0.82 [0.75, 0.88], but the performance gain was not sta-
tistically significant (p=0.18).

4. Discussions and Conclusions

In this work, we presented a framework for extracting
and interrogating the clinical significance of vital sign dy-
namics shared across a patient cohort. Using HR/BP time
series of over 450 adult ICU patients, we demonstrated
that the fluctuation patterns in HR and BP were signif-
icantly correlated with several laboratory measurements
routinely monitored in the ICU, and can potentially be used
to track the patho-physiological states of the patients. We
demonstrated that the bivariate dynamics of HR and MAP
achieved similar performance in detecting sepsis in com-
parison to that of the SAPS I scores, which used age and
the most extreme values of 13 variables. Combining the
bivariate dynamics of HR/MAP time series and SAPS I
provided a more accurate assessment of patients’ risks in

sepsis than using SAPS I alone, suggesting that the dy-
namics of the interaction between HR and BP may con-
tain additional predictive value beyond that contained in
the SAPS I scores alone. Our ongoing work involves inte-
grating multimodal measurements of vital sings with clin-
ical data, including lab tests, medications, and clinical in-
terventions (administration of fluids, pressors, and titration
of medications) to design a risk score capable of continu-
ous monitoring of ICU patients and informing therapeutic
interventions.
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