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Abstract

We present a similarity-based searching and pattern

matching algorithm that identifies time series data with

similar temporal dynamics in large-scale, multi-parameter

databases. We represent time series segments by feature

vectors that reflect the dynamical patterns of single and

multi-dimensional physiological time series. Features in-

clude regression slopes at varying time scales, maximum

transient changes, auto-correlation coefficients of individ-

ual signals, and cross correlations among multiple signals.

We model the dynamical patterns with a Gaussian mixture

model (GMM) learned with the Expectation Maximization

algorithm, and compute similarity between segments as

Mahalanobis distances. We evaluate the use of our algo-

rithm in three applications: search-by-example based data

retrieval, event classification, and forecasting, using syn-

thetic and real physiologic time series from a variety of

sources.

1. Introduction

Robust navigation and mining of physiologic time-

series databases often require finding similar temporal pat-

terns of physiological responses. In collections such as the

MIMIC II database [1], we seek cases in which trends and

interrelationships among vital signs exhibit patterns resem-

bling those of a prototype (selected) case. Detection of

these complex physiological patterns not only enables de-

marcation of important clinical events but can also eluci-

date hidden dynamical structures that may be suggestive of

disease processes.

We describe a similarity-based searching and pattern

matching algorithm that identifies time series data with

similar temporal dynamics in large-scale, multi-parameter

databases. We model the similarity among physiological

time series with a Gaussian mixture model in which “clus-

ters” of series with similar temporal patterns are identified.

We explore the use of our pattern matching algorithm in

(1) data retrieval, (2) event classification, and (3) predic-

tive monitoring.

In the data retrieval and exploration context, we evalu-

ate the use of our algorithm as a “search-by-example” tool.

In a collection of many time series, it seeks those that ex-

hibit temporal patterns similar to the patterns in a given

example. Such a tool may help in finding cohorts of pa-

tients with similar pathologies, and in identifying temporal

patterns that may be suggestive of disease progressions.

In event classification, our goal is to differentiate among

physiological trends corresponding to different clinical

events, which may be useful for event detection and for

alert generation for clinical decision support.

In the context of predictive monitoring, our goal is

to predict significant clinical events or outcomes based

on physiological measurements well before obvious signs

of physiological deterioration develop in patients. The

premise of our approach is that subtle patterns of vital signs

and their interrelationships, common to patients with sim-

ilar disease progressions, may have prognostic value.

2. Methods

We represent time series segments by feature vectors

that reflect the dynamical patterns of single and multi-

dimensional physiological time series. Features include

regression slopes at varying time scales, maximum tran-

sient changes, auto-correlation coefficients of individual

signals, and cross correlations among multiple signals. We

model the dynamical patterns with a Gaussian mixture

model (GMM) learned with the Expectation Maximization

(EM) algorithm. Once the mixture model is generated,

similarity between segments can be computed as Maha-

lanobis distances.

Mixture models are simple probabilistic models that can

be used to uncover hidden structure in the data, especially

in terms of unidentified subgroups. An M-component

Gaussian mixture model over data x is defined as

P (x; θ) =
M∑

j=1

P (j)N(x;µj ,Σj) (1)

The parameters θ include the prior distribution P (j),
Gaussian component means µj , and covariances Σj . EM

is an iterative algorithm that seeks to find the GMM param-

eters that maximize the log likelihood of the data [2, 3]. In

the initialization step, component means are initialized to
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randomly chosen data points, component covariances are

set to the overall data covariance, and the prior probability

for each component is 1
M

.

The E-step in each iteration l evaluates the posterior as-

signment probabilities pl(j|i) = P (j|xi, θ
l) based on the

current setting of the parameters θl, where j = 1,...,M , and

i = 1,..., N . For each data point, we compute the posterior

probability that it is generated from each of the compo-

nents. The M-step updates the parameters P (j), µj , and

Σj based on the posterior probabilities pl(j|i) from the E-

step. To overcome numerical problems, we use a regular-

ized EM algorithm [3, 4].

The algorithm stops when the relative change in log-

likelihood falls below some small amount ǫ or when a

specified maximum number of iterations is reached. Since

EM can get stuck in locally optimal solutions, we re-run

EM multiple (typically 100 to 1000) times, each with a

different initialization of the component means. The one

with the maximum log-likelihood of the fitted mixture of

Gaussians is returned by the algorithm as the final mixture

model for a given M .

We use a K-nearest neighbor based classification rule,

in which the class/type of a temporal pattern in question

is determined based on its similarity to libraries of pat-

terns associated with known events. Given a segment i,

we retrieve its K nearest neighbors (in terms of Maha-

lanobis distances) from its assigned Gaussian component.

A threshold-based rule is used for binary classification as

in [5]. We use a majority based rule for multi-class clas-

sification. Upon a tie, i is classified using the “closest”

neighbor from the competing classes.

3. Evaluation

We tested our algorithm’s performance in retrieval, clas-

sification, and prediction accuracy using three data sets.

First, we utilized a synthetic benchmark data set consisting

of 6 classes with 100 representative examples from each

class. In another experiment, we examined heart rate and

blood pressure time series from tilt tests of ten healthy hu-

man subjects (10 hours in all, containing 120 responses

to six different interventions). Finally, we assessed our al-

gorithm in predicting recurrent hypotensive episodes (af-

ter the withdrawal of vasoactive medications) using the

MIMIC II database.

3.1. Search by example

We applied our algorithm to the task of finding time se-

ries in the Synthetic Control Chart Time Series data set

from UC-Irvine [6] that were similar to a randomly cho-

sen example from that set. The data set consists of 600

artificially generated time series, forming 6 classes (100

examples of each class) of similar time series: normal,
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Figure 1. Example patterns from the synthetic data set.

Three examples from each of the six classes are shown.

cyclic, increasing trend, decreasing trend, upward shift,

and downward shift (see figure 1).

By using each of the 600 synthetic time series in turn

as an example to be matched, our algorithm found the 99

best matches to the example from the remaining 599 se-

ries. Using a six-component GMM to find the best K-

nearest neighbor matches for a randomly selected case, the

retrieval accuracy was 95% when K is 99 (in other words,

about 95 of the 99 nearest neighbors, on average, belonged

to the same class as the example).

3.2. Classification

Using the same data set and six-component GMM as

in the search by example application, we evaluated the

algorithm’s classification performance. With one-nearest

neighbor (1-NN) as a classification rule, the algorithm was

able to classify 588 out of 600 synthetic time series cor-

rectly (98% classification accuracy).

We conducted another study of classification using a real

data set that included ten hours of hemodynamic (heart rate

and blood pressure) measurements from ten healthy human

subjects undergoing 6 different types of tilt table interven-

tions [7]: slow tilting up/down (75 degrees in 50 seconds),

rapid tilting up/down (75 degrees in 2 seconds), and transi-

tions between standing and supine positions (transitions in

less than 2 seconds). Interventions were 5 minutes apart.

Each subject underwent 12 interventions (2 per type) over

a one-hour period.

In this second study, our algorithm classified the tran-

sient physiological responses of the subjects that corre-

sponded to the six interventions, with the goal of being

able to identify which intervention evoked a given re-
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Table 1. Recall and precision using 1-nearest neighbor

classification with a 6-component GMM. Overall classifi-

cation accuracy is 0.88.

Tilt Up Tilt Down Stand Up Lie Down

Recall 0.88 0.88 0.85 0.90

Prec. 0.92 0.85 1.00 0.75

sponse.

Classification performance is measured in terms of class

recall and precision. Recall and precision for class i

are measured as TPi

(TPi+FNi)
, and TPi

(TPi+FPi)
respectively,

where TPi, FNi and FPi are the number of true positives,

false negatives, and false positives in class i respectively.

The overall classification accuracy is defined as the frac-

tion of events that the algorithm classifies correctly.

We extracted 120 three-minute segments of heart rate

and mean arterial blood pressure (each sampled at 2 Hz)

from the ten hours of recordings. Each segment started

one minute before the intervention. We constructed fea-

ture vectors from the HR and MAP signals using regres-

sion slopes at varying time scales (ranging from 10 seconds

to 3 minutes), maximum transient increase and decrease in

a 5 second interval, and auto-correlation with a 5-second

lag. K-nearest neighbor classification based on majority

rule was used.

We observed that the responses were affected only in

subtle ways by the speed of the tilt, so our algorithm ini-

tially grouped the responses into only four classes (tilt up,

tilt down, stand up, lie down). Table 1 reports the recall

and precision for each class obtained using a 6-component

GMM with a 1-NN rule. The overall classification ac-

curacy is 0.88. In the more challenging task of six-way

classification (differentiating between slow and fast tilts

as well) using the same 6-component GMM, we obtained

classification accuracies of 0.67 with a 1-NN rule, and 0.71

with an 8-NN rule. As part of our future work, we are ex-

ploring feature sets that can be used to differentiate a wider

variety of temporal patterns.

3.3. Forecasting

Finally, we applied our algorithm to the task of forecast-

ing hypotensive episodes in intensive care unit patients.

Early warning of these life-threatening events can allow

the medical staff to take precautionary measures. Using

cases from the MIMIC II database in which recurrent hy-

potensive episodes were observed, we attempted to iden-

tify features of the physiologic time series that can be used

to distinguish between patients who stabilized from a pre-

vious hypotensive episode and those who deteriorated fur-
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Figure 2. An excerpt of a MIMIC II record from a pa-

tient with recurrent hypotension after pressor withdrawal.

Pressor was withdrawn at time 0. The patient required re-

administration of pressor therapy approximately 4 hours

later. Our current study used the HR and MAP measure-

ments during the one-hour period (shaded area) immedi-

ately following the pressor withdrawal to predict whether

the patient would become hypotensive again.

ther to develop recurrent hypotensive episodes.

In this pilot study, we focused on patients who received

intravenous vasoactive medication (pressor) therapies. Our

goal was to utilize the physiological measurements ob-

tained during the first hour of pressor withdrawal to pre-

dict which patients would successfully wean off of pres-

sors, and which ones would develop recurrent hypotension

within 2 to 6 hours after withdrawal from their previous

pressor administration. Figure 2 shows an excerpt of a

MIMIC II record of a patient with recurrent hypotension

after pressor withdrawal. The shaded area represents the

data segment used for the prediction task.

Two cohorts of patients were selected from the MIMIC

II database: the stable group (118 instances of pressor ther-

apies, 118 unique patients) consisted of patients who were

successfully weaned from vasoactive medications without

the need for successive pressor therapies. The unstable

group (109 instances of pressor therapies, 85 unique pa-

tients) consisted of patients who required re-administration

of intravenous pressor therapies 2 to 6 hours after the with-

drawal of their previous pressor treatment.

We preprocessed the time series of heart rate (HR) and

mean arterial blood pressure (MAP) measured at one-

minute intervals with median filters and removed noisy

samples that fell beyond physiological bounds. Linear in-

terpolation was used to fill in the missing values. Fea-

ture vectors were constructed from one-hour segments of

HR and MAP time series beginning immediately after the

withdrawal of the pressor therapy. Features extracted in-
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Figure 3. ROC for predicting outcome between stable and

unstable groups, using a 26-component GMM with a 23-

NN classification rule, generated by varying the unstable

threshold (0.3 <= ρ <= 0.7).

cluded 15- and 60-minute regression slopes, maximum

transient increase and decrease, auto-correlation, and cross

correlation between MAP and HR.

We used a threshold-based K-nearest neighbor classifi-

cation rule as in [5]. The classification was based on an

unstable threshold setting ρ, where (0 < ρ < 1). A patient

was classified as unstable if at least ρK of the K nearest

neighbors were unstable; otherwise, the patient was clas-

sified as stable.

Sensitivity ( TP
TP+FN

) and specificity ( TN
TN+FP

) were

used to measure prediction accuracy, where TP (true posi-

tive) and FP (false positive) were the numbers of correctly

and incorrectly labeled unstable events, and TN (true nega-

tive) and FP (false positive) were the numbers of correctly

and incorrectly labeled stable events.

Ten-fold cross validation was used for evaluation. The

mixture model was constructed using the training set, and

the model with the best average test error was reported.

Figure 3 shows the Receiver Operating Curve (ROC) for

forecasting using a 26-component mixture model. The

area under the ROC is 0.67. A sensitivity of 0.74, with

a specificity of 0.60, was obtained at K = 23, and un-

stable threshold ρ = 0.41. As part of our future work,

we plan to use physiological measurements obtained be-

fore the withdrawal of the pressors to predict recurrent hy-

potensive episodes.

4. Conclusions and future work

We developed a similarity-based searching and pattern

matching algorithm and evaluated its use in searching by

example, event classification, and forecasting. Using a

synthetically generated time-series data set, we demon-

strated that our algorithm achieves high accuracy in search-

by-example retrieval and in event classification. We also

demonstrated the algorithm’s potential use in event classi-

fication and forecasting using real physiological measure-

ments from tilt tests and the MIMIC II database. The per-

formance analysis suggests that the robustness of forecast-

ing algorithms is highly dependent on the feature vectors

that are used for training various machine learning algo-

rithms. Future work will focus on developing compact fea-

ture sets that best characterize the salient physiologic dy-

namics that distinguish different physiologic states in ICU

patients.
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