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Abstract

Acute Respiratory Distress Syndrome (ARDS) is a severe lung illness characterized by inflammation and
fluid accumulation in the respiratory system. Historically, ARDS and other forms of respiratory failure
have been treated using mechanical ventilation to help maintain gas exchange in the lungs. However,
clinical investigators are beginning to discover the adverse effects of mechanical ventilation if it is not
applied properly. Specifically, excessive ventilator volumes and pressures may exacerbate existing lung
injury and increase hospital mortality. Furthermore, aggressive ventilation may cause lung injury and
trigger an inflammatory response that is characteristic of ARDS. These findings have alarmed the critical
care community, and many studies have been conducted to find mechanical ventilator settings that reduce
mortality in patients with ARDS. However, there have been no firm recommendations on the optimal
settings for patients who require ventilator therapy for reasons apart from respiratory failure.

In this thesis, we retrospectively examine a large medical database (MIMIC-II) to study the relationship
between mechanical ventilation and the development of ARDS. Specifically, our goals are to (1) find patients
who did not have ARDS at the beginning of mechanical ventilation but who later developed the disease;
(2) identify physiologic and ventilator-associated risk factors for ARDS; and (3) develop a text analysis
algorithm to automatically extract clinical findings from radiology (chest x-ray) reports.

Our findings suggest that acute respiratory distress syndrome is a relatively common illness in patients who
require mechanical ventilation in the ICU (152 of 789 without ARDS at the outset eventually developed
the disease). High plateau pressure (odds ratio 1.5 per 6.3 cmH20, p < 0.001) is the most important
ventilator-associated risk factor for the development of new ARDS. Physiologic risk factors include high
weight, low blood pH, high lactate, pneumonia, and sepsis. Thus it may be possible to reduce the occurrence
of ventilator-induced lung injuries with careful pressure management. However, a randomized prospective
study is needed to support this hypothesis.

Thesis Supervisor: Roger Mark
Title: Distinguished Professor in Health Science and Technology
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Chapter 1

Introduction

1.1 Motivation

The lungs are a vital part of the body’s respiratory system, responsible for acquiring oxygen and removing
excess carbon dioxide from the bloodstream. These processes occur in the lung alveoli, microscopic air
sacs that facilitate gas exchange, as shown in Figure 1.1. Pulmonary capillaries surround the alveoli,
allowing gases to diffuse across the thin membrane separating blood in the capillaries from inspired air.
In normal respiratory function, blood high in carbon dioxide and low in oxygen is delivered to the lungs,
and oxygenated blood with lower carbon dioxide is returned to systemic circulation. This process helps to

maintain normal bodily metabolism and homeostasis.

Epiglottis

Trachea
Collar bone

Lymph nodes

Bronchus

Lung

Diaphragm

Figure 1.1: Anatomy of the respiratory system. Figure adapted from [1].



Introduction

Failure of the respiratory system has negative consequences: 1) accumulation of carbon dioxide lowers
blood pH and disrupts many biochemical activities; 2) inadequate tissue oxygenation may cause tissue

death and organ failure, increasing the chance for patient death.

Acute respiratory distress syndrome (ARDS) is one of the most severe forms of respiratory failure. It
is associated with prolonged hospitalizations and high mortality rates, making it a formidable complica-
tion to deal with in the intensive care unit (ICU). There is evidence that clinical interventions such as
mechanical ventilation may influence the development of ARDS in patients at risk of the disease. Thus,
there is tremendous value in identifying and understanding the risk factors for ARDS, especially if they

are interventions that can be controlled in a clinical setting.

1.2 Thesis goals

The research conducted in this thesis aims to achieve the following goals:

e To retrospectively examine a large medical database (MIMIC-II) to find patients who do not have ARDS

at the beginning of mechanical ventilation therapy, but who later develop the disease.

e To test the hypothesis that improper mechanical ventilation may cause acute lung injury (ALI)/acute
respiratory distress syndrome (ARDS) in patients who do not have the diseases at the outset. We

achieve this goal by identifying physiologic and ventilator-associated risk factors for ALI and ARDS.

e To design and evaluate an algorithm that automatically extracts clinical findings from chest x-ray

reports.

1.3 Thesis outline

This thesis includes 5 chapters and 1 appendix.

e Chapter 2: ARDS and Mechanical Ventilation, provides a brief background on acute respiratory distress
syndrome and mechanical ventilation. It explains the clinical criteria for ARDS, various ventilator

settings and modes, and summarizes recent studies and clinical trials on ventilator-induced lung injury.

e Chapter 3: Data Extraction and Statistical Methods, describes the methods used to obtain and analyze

data from the MIMIC-II database. It includes an overview of the database (how and from where the

— 16 —



1.3 Thesis outline

data were collected, types of data available), the algorithms used for patient selection, and the basic

theory of logistic regression and prediction.

Chapter 4: Results, presents the important risk factors associated with the development of ARDS
and the less severe form, acute lung injury (ALI). Physiologic and ventilator-associated risk factors
are examined using univariate analyses, and their relative importance is compared using multivariate

techniques.

Chapter 5: Discussion and Conclusions, summarizes the important findings and discusses the results
in the context of clinical relevance. Important milestones are listed, and suggestions for future work are

also presented.

Appendix A: An Automated Radiology Report Reader, presents a detailed description of the algorithm
used to extract information from chest x-ray (text) reports. The algorithm evaluation is included, along

with a summary of the Java source code.

- 17 -



Chapter 2

ARDS and Mechanical Ventilation

2.1 Acute Respiratory Distress Syndrome (ARDS)

Acute Respiratory Distress Syndrome is considered to be the leading cause of acute respiratory failure in
the United States. It is a severe inflammatory disease that causes diffuse lung injury (accumulation of
fluids and other blood contents) and impaired gas exchange in the alveoli. Other names for ARDS include
wet lung, shock lung, leaky-capillary pulmonary edema, and adult respiratory distress syndrome. A milder
form ARDS is called acute lung injury (ALI), which is a precursor to ARDS. In the United States, ARDS is

responsible for 150,000 cases of respiratory failure per year and has an associated mortality rate of between
40% and 50%.

2.1.1 Clinical definition

The clinical definition for ALI and ARDS was established in 1994 by an American-European consensus

conference [2] and includes the following criteria:

1. An acute onset.
2. Bilateral infiltrates revealed by a chest radiograph (x-ray).

3. Not left ventricular heart failure (pulmonary artery wedge pressure < 18 mmHg, or lack of evidence for

heart failure).

4. (i) PaO2/FiO2 < 300 mmHg to be considered acute lung injury (ALI).

(ii) PaO2/FiO2 < 200 mmHg to be considered acute respiratory distress syndrome (ARDS).

The consensus definition describes ARDS as having an acute or sudden onset, rather than a chronic
progression. The chest x-ray must also show bilateral infiltrates (opaque or hazy regions in both the

left and right lungs). An example of chest x-rays with bilateral infiltrates and clear lungs is shown in



2.1 Acute Respiratory Distress Syndrome (ARDS)

Figure 2.1. When diagnosing ARDS, it is necessary to rule out the possibility of left ventricular heart
failure, also known as congestive heart failure. In this illness, the heart is unable to pump out blood at an
adequate rate, leading to high left ventricular filling pressures. The left atrial pressure also rises, causing
increased pulmonary capillary hydrostatic pressure that forces fluid to enter lung alveoli. A standard
method of distinguishing ARDS from cardiogenic pulmonary edema is to examine the pulmonary artery
wedge pressure (PAWP), which reflects left arterial pressure: heart failure produces an elevated PAWP
(over 18 mmHg) while ARDS does not. The fourth criteria examines the PaO;/FiO; ratio, a measure of
gas exchange in the lungs. PaQO; is the partial pressure of oxygen in the blood, and FiOs is the fraction
of oxygen in inspired air. Under normal conditions, PaO; is near 100 mmHg, FiO; is 0.21 (21% oxygen in
free air), and the ratio PaOy/FiO; is between 400 and 500 mmHg. In acute lung injury, PaO2/FiO2 drops
below 300 mmHg while the more severe ARDS has a PaO;/FiO; ratio below 200 mmHg. Such conditions
describe “severe hypoxia refractory to oxygen,” or low bodily oxygen content despite being treated with

high amounts of oxygen [3].

(a) Normal lungs (b) Bilateral infiltrates

Figure 2.1: Comparison of chest x-rays in normal lungs vs. lungs with bilateral infiltrates, which is
characteristic of ARDS. Infiltrates appear as opaque or hazy regions in the lungs.

2.1.2 Causes of ARDS

ARDS is triggered by a variety of direct and indirect injuries to the lungs. The most common causes are
“inflammatory,” in which systemic inflammation from another illness (such as trauma or sepsis) initiates a
diffuse inflammatory injury in the lungs. Specifically, inflammatory mediators (cytokines and neutrophils)
travel to the lungs via the bloodstream and cause pulmonary capillaries to become more permeable, allowing
blood contents (fluid, cells, and proteins) to enter the lung alveoli. The presence of these infiltrates disrupt

gas exchange and cause damage to the lung tissue.

A second class of insults is a result of physical injury, in which lung alveoli are damaged due to mechanical
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stresses. For example, pulmonary contusion or lung overdistension due to mechanical ventilation may cause
barotrauma (alveolar rupture) and injury of lung tissue, ultimately triggering an inflammatory response

that leads to in lung infiltrates and disrupted gas exchange.

Lastly, there is ARDS due to infection. For example, pneumonia from a bacterial or viral infection may
also cause a respiratory inflammatory response that results in infiltrate edema and impaired gas exchange.
The causes of ARDS may vary, but it is possible that mechanical ventilation can influence one of more of
these underlying illnesses.

2.1.3 Complications due to ARDS

The presence of ARDS often results in prolonged hospital stay and increased mortality due to various
negative consequences. First, impaired gas exchange will cause hypoxia (inadequate oxygen levels) and
hypercapnia (elevated carbon dioxide levels), both of which are life-threatening if left untreated. Second,
it is possible for inflammation in the respiratory system to spread to other organs. The combined effects of
systemic inflammation and hypoxia predisposes patients to multiple-organ failure, greatly increasing the
chance of death. Third, diffuse infiltrates in the lungs may disturb the balance of surfactants in the alveoli,
predisposing certain parts of the lungs to collapse. For this reason, it is possible for atelectasis and/or
consolidation to be present at the same time as ARDS.

2.2 Mechanical ventilation

Mechanical ventilation is a clinical intervention used to assist or replace spontaneous breathing in patients
for days to weeks in the intensive care umit. Its most important function is to maintain gas exchange in
patients with respiratory failure (severe hypoxia and/or hypercapnia) or who cannot breathe on their own.
In this thesis, “mechanical ventilation” refers to positive-pressure ventilation, where air is delivered to the
lungs by applying positive pressures in the patient’s airway. In order to control the delivered volumes
and pressures, clinicians must perform intubation, a process by which endotracheal tube is passed through
the mouth, the larynx, and into the trachea (Figure 2.2). In addition, the patient is usually sedated to
prevent injurious interactions between spontaneous and mechanical breathing. For this reason, mechanical

ventilation is considered an invasive intervention that has its own advantages and disadvantages.

- 20—



2.2 Mechanical ventilation

Endotracheal tube

Figure 2.2: Endotracheal intubation for mechanical ventilation

2.2.1 Mechanical ventilator modes

A variety of ventilator modes are available to accommodate patients with different needs. There are two
general categories of ventilator modes: volume-control and pressure-control. Volume-control modes deliver
a fixed volume with each breath, while pressure-control modes apply a preset maximal pressure at the
airway during inspiration to deliver breaths. Within each of the two categories, a variety of modes exist to
accommodate different breathing patterns. Some modes deal with patients who are unable to breathe on
their own, and others are for patients breathing spontaneously. The most common ventilator modes are

discussed below and summarized in Table 2.1.

Volume-control modes:

e Continuous Mandatory Ventilation (CMYV) - breaths are delivered at preset volumes and intervals
regardless of patient effort. This mode is used only when a patient is sedated, paralyzed, or is apneic

(not breathing) to minimize the chance of lung injury.

e Assist Control Ventilation (A/C) - the ventilator delivers a preset volume with each inspiratory
effort. The inspiratory effort is detected by a drop in airway pressure as the patient begins to inhale.
This mode prevents the ventilator from delivering a full tidal volume when the patient is maximally

inhaled, a potential cause of barotrauma.

¢ Intermittent Mandatory Ventilation (IMV) - breaths are administered at a preset (lower) fre-

quency, and the patient is allowed to breathe spontaneously between ventilator-delivered breaths. Syn-
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chronous intermittent mandatory ventilation (SIMV) is similar to IMV, except that the ventilator-
delivered breaths are administered according to patient inspiratory effort. IMV and SIMV may be used

in “weaning,” the process to help patients slowly breathe independently of the ventilator.
Pressure-control Modes:

e Pressure Control (PC) - a preset pressure is applied during inspiration at a fixed respiratory rate.
The volume of air delivered depends on the patient’s airway resistance, lung compliance, and duration

of the inspiration period.

e Pressure Support (PS) - a preset amount of support pressure is used to assist every spontaneous
breath. This mode differs from CMV and A/C in that the amount of pressure is set instead of the tidal
volume. It has been recommended to use pressure support for patients who are breathing spontaneously

but are still in need of assistance.

e Continuous Positive Airway Pressure (CPAP) - the patient is allowed to breathe spontaneously
in the presence of constant (low) airway pressure. This mode may be used to keep the airway open (in
obstructive lung disease), collapsed parts of the lung inflated, and/or to help reduce lung fluid. The
continuous pressure is often used together with other ventilator modes (such as pressure control and
pressure support) to avoid repeated opening and closing of lung alveoli, a potential cause of ventilator-

associated lung injury.

Table 2.1: Mechanical ventilator modes

Mode Description V/P control Level of support
CMV  Continuous Mandatory Ventilation Volume Controls breathing
A/C Assist Control Ventilation Volume Assists breathing
IMV  Intermittent Mandatory Ventilation = Volume Spontaneous breathing
PC Pressure Control Pressure Controls breathing

PS Pressure Support Pressure Assists breathing
CPAP Continuous Positive Airway Pressure Pressure Spontaneous breathing

2.2.2 Mechanical ventilator settings

In addition to ventilator mode, there are a variety of settings used to customize ventilator treatment. Each
variable is set or observed depending on the ventilator mode and breathing status of the patient. These

settings are described here and summarized in Table 2.2.
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2.2 Mechanical ventilation

e Tidal volume (V) - the volume of air delivered during one inspiration. Historically, a Vr of 10 to 15
mL/kg of predicted body weight has been used. However, lower volumes 6 mL/kg are now recommended
for patients with ARDS or pulmonary edema because these lungs have lower respiratory compliance.
In volume-control modes, Vr is an adjustable variable. In pressure-control modes, it is observed and is

a function of ventilator pressures and a patient’s lung compliance.

e Peak inspiratory pressure (PIP) - the maximum applied pressure at the airway during inspiration.
PIP is the sum of three pressures: the positive end-expiratory pressure (PEEP), the pressure due to
lung inflation (elastic pressure), and pressure needed to overcome airway resistance as shown in Figure
2.3. PIP, also known as peak pressure, is set in pressure-control modes and observed in volume-control

modes.

Peak inspiratory
pressure

Plateau
pressure

:]- Resistive pressure

- Elastic pressure

AIRWAY PRESSURE

PEEP

Hold Expration
TIME

Inhalation

Figure 2.3: Airway pressures during mechanical ventilation. Ventilator settings shown include peak inspi-
ratory pressure, plateau pressure, and PEEP.

o Plateau pressure (Pp,:) - the airway pressure measured immediately after the end of inspiration and
before expiration, a period known as the inspiratory pause or inspiratory hold. Pyq is the most direct
measurement of the pressures sustained by lung alveoli (because it is recorded when net airflow is zero),
so it has been recommended to keep Ppq: below a certain threshold (28 cmH20) to avoid barotrauma.

Ppiqt is well correlated with PIP in most patients where airway resistance remains fairly constant.

¢ Positive end-expiratory pressure (PEEP) - the airway pressure measured at the end of expiration.
A small amount of PEEP (5 to 10 cmH30) is recommended to minimize injury associated with repeated

opening and closing of lung alveoli. Higher PEEP is sometimes used to recruit collapsed areas of the
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lung. This variable can be set in both volume-control and pressure-control modes.

e Oxygen fraction (FiOz) - the fraction of oxygen in inspired air, represented as a number between 0
and 1. Normal air contains 21% oxygen, giving FiO; = 0.21. Mechanical ventilators can deliver oxygen

levels of up to 100%, although FiOs is usually kept lower to reduce the chance of oxygen toxicity.

o Respiratory rate (RR) - the frequency of breaths delivered by the ventilator. Respiratory rate in
normal adults ranges between 10 and 20 breaths per minute. In mechanically ventilated patients, a RR
of 8 - 12 breaths per minute is recommended for those without metabolic acidosis. Higher respiratory
rates allow less time for exhalation, a problem for patients with obstructive airway disease. Respiratory

rate and tidal volume can be adjusted to control minute volume, the volume air delivered per minute:

L
Minute volume (m—) = RR*Vr
min

Table 2.2: Mechanical ventilator settings

Setting Description Units

Vr Tidal volume mL

PIP Peak inspiratory pressure cmH-20
Pyiat Plateau pressure cmHoO
PEEP Positive end-expiratory pressure cmHO
FiOq Oxygen concentration fraction

RR Respiratory rate breaths/min

2.2.3 Advantages of mechanical ventilation

The advantages of mechanical ventilation lie in its ability to provide life-saving therapies in the short
term. First, it can be used to inflate parts of the lungs that are collapsed due to atelectasis and provide
necessary aeration to the bilateral lungs. Second, the ability to control the ventilation and amount of
oxygen delivered makes it possible to correct life-threatening hypoxia and hypercapnia. Third, positive
pressures may be used to push out fluid that accumulates in the alveoli, for example to decrease pulmonary
edema, caused by heart failure. However, this technique does not apply to ARDS, in which lung infiltrates
include cells and proteins in addition to fluid from the bloodstream. Finally, intubation for mechanical
ventilation may be used to control/protect a patient’s airway as a precautionary measure. For example,
patients with head injury, in post-operative recovery, or drug overdose may have an impaired respiratory
drive and be intubated in anticipation of the need for life support and/or to protect the airway. Thus it is

possible for patients without respiratory failure to be intubated for mechanical ventilation.



2.3 Clinical studies on mechanical ventilation and ARDS

2.2.4 Disadvantages of mechanical ventilation

Although it is a life-saving technique, mechanical ventilation also has disadvantages because of its invasive
nature. First, the use of this therapy prolongs hospital stay because it is necessary to “wean” a patient
before disconnecting the ventilator. Such weaning may require several days depending on the patient’s
ability to recover. Second, there are numerous complications associated with mechanical ventilation, in-
cluding the risk for pneumothorax (punctured lung), ventilator-associated pneumonia, alveolar injury, and
airway injury due to improper intubation or ventilation. The relationship between mechanical ventilation
and lung injury (including ARDS) is still under investigation, and this thesis aims to contribute to such

an effort.

2.3 Clinical studies on mechanical ventilation and ARDS

2.3.1 The use of mechanical ventilation in ARDS patients

Mechanical ventilation has been an important component of the care of patients with respiratory failure,
and it is clear that this therapy was critical to their survival. Traditionally, tidal volumes of 10 to 15
mL/kg predicted body weight (PBW) have been used in patients with respiratory failure [4]. However, it
has become apparent that ARDS significantly reduces the amount of normally aerated lung tissues and
that high tidal volumes may over-distend the injured lungs [5]. Various clinical trials have thus tried to
examine the relationship between ventilator settings and the outcome of ARDS patients (measured as

hospital mortality, duration of mechanical ventilation, and duration of non-pulmonary organ failure).

Four randomized controlled trials were conducted in the late 1990s to evaluate the benefit of low vs.
traditional tidal volumes in ARDS patients. One of the studies found a significant difference in hospital
mortality between patient groups (38% for Vr < 6 mL/kg PBW vs. 71% for Vr = 12 mL/kg PBW, p =
0.001) [6]. The other three trials did not find significant differences in patient mortality, possibly because
the difference between tidal volumes was not as large (Vr < 8 mL/kg PBW in low tidal volume groups)
(7, 8, 9]. All of these studies had low statistical power due to small sample sizes (n = 52 to 120), so a large
prospective trial was conducted over three years to address the conflicting results. This trial enrolled 861
patients in 10 institutions and found that lower tidal volumes (Vr < 6 mL/kg PBW vs. Vr > 12 mL/kg
PBW) were significantly associated with lower hospital mortality (31% vs. 39.8%, p = 0.007) [10].

There has also been discussion of the protective nature of PEEP in patients with respiratory failure. It
is known that repeated opening and closing of alveoli during respiratory cycle can promote lung injury

in animal models [11, 12]. Thus it has been proposed that PEEP may be used to prevent compression
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atelectasis and limit phasic collapse of airways. However, a large randomized trial to examine the effects
of high vs. low PEEP (15 cmH;0 vs. 9 cmH30) in ARDS patients produced no difference in mortality,
duration of mechanical ventilation, or duration of non-pulmonary organ failure [13]. Although PEEP has
been used to reduce lung fluid in mild cardiogenic pulmonary edema, it does not reduce lung infiltrates
in ARDS [14, 15]. Thus, low tidal volume is the only method of mechanical ventilation that, to date, has

been shown to improve survival in patients with ARDS in randomized controlled trials.

2.3.2 Ventilator-induced ARDS

There is strong evidence that mechanical ventilation with high tidal volumes and airway pressures can
trigger inflammatory pulmonary edema in animal models [16, 17, 18, 19]. This causes concern for treatment
of human patients who are mechanically ventilated but who do not have lung injury at the outset. In fact,
patients without respiratory failure make up a significant portion (20 - 30%) of all who are mechanically

ventilated in the intensive care unit [20, 21].

Despite the numerous studies on ARDS mortality in humans and lung injury in animals, the evidence for
ventilator-induced ARDS in humans is still scarce. It is known that short-term endotracheal intubation
and long term mechanical ventilation may increase the risk for nosocomial pneumonia [22]. However, there
have been no randomized trials to assess the effects of ventilator settings on new lung injury. The only
studies on this topic have been retrospective analyses, which find high tidal volumes to be a risk factor
for ALI and ARDS (23, 24]. An important limitation to these studies was that high settings may have
been used to correct underlying hypoxia and thus may be an indication of sicker patients. In addition, the
relative importance of high airway pressures and high tidal volume as risk factors has not been examined

previously in detail.

In general, there have been few studies and no firm recommendations on the optimal settings for patients
who require mechanical ventilation for reasons apart from respiratory failure. This thesis aims to investigate
this issue through a retrospective analysis of data collected from intensive care units at a single institution
hospital. The results of this study contribute to the understanding of ventilator-associated ARDS and has

important application in clinical practice.
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Chapter 3

Data Extraction and Statistical Methods

This chapter describes the acquisition and analysis of data from the MIMIC-II database. It includes
an overview of the database (how and from where the data were collected, types of data available), the

algorithms used for patient selection, and the basic theory of odds ratios and logistic regression.

3.1 The MIMIC-II database

The Multi Parameter Intelligent Monitoring of Intensive Care database (MIMIC-II) is a large ICU database
developed to support research in intelligent patient monitoring and clinical decision making [25]. It has
collected data from intensive care units at Beth Israel Deaconess Medical Center (BIDMC) since 2001, and
data acquisition remains an ongoing effort. At the time of research performed for this thesis, MIMIC-II
contained over 17,000 electronic medical records for patients admitted between 2001 and 2005.

The MIMIC-II database contains a variety of information from bedside monitors, mechanical ventilators,
laboratory tests, progress notes, and recorded medical interventions. Continuous waveform data (ECG,
blood pressures, and respiratory waveforms) were obtained from bedside monitors, and vital signs (heart
rate, blood pressures, etc) were recorded by ICU nurses on an hourly basis. Ventilator settings were
documented by respiratory therapists at the time of intubation and as ventilator settings were adjusted.
Blood gas measurements, lab results, IV medications, and fluid I/O were recorded as the interventions
were performed. Nursing progress notes were recorded at various times during the patient’s hospital stay.
Radiological films were evaluated by specialists at the time of patient care, and written evaluations were
entered into the database along with the report type and dates. ICD-9 codes were recorded for specific

diseases as required by hospital staff upon patient discharge.
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3.2 Finding patients of interest

To study the effects of mechanical ventilation on the development of ARDS, we looked for patients from the
database who were on the ventilator for longer than 48 hours and who did not have ARDS at the outset.
To rule out cardiogenic causes of pulmonary edema, we excluded patients with evidence of congestive
heart failure from this study. The remaining patients were then grouped according to the quality of lung
health at the beginning of mechanical ventilation. Subsequent development of ARDS was detected by a

deterioration of gas exchange and the presence of bilateral infiltrates in the chest x-ray reports.

3.2.1 Calculating the length of mechanical ventilation

The length of mechanical ventilation was defined as the duration of the first continuous ventilation period
according to recorded ventilator settings. The most commonly recorded setting was ventilator mode, which
was present whenever other ventilator settings were recorded (i.e. tidal volume, respiratory rate). This
information was available approximately once every 3 to 10 hours, thus we assumed that ventilator therapy
has terminated if 24 hours have passed without a recorded ventilator mode. An algorithm was designed
to find the beginning and end points of mechanical ventilation based on this criteria, and an example of
this calculation is shown in Figure 3.1. Only patients who were continuously ventilated for greater than

48 hours were included in this study.

Periods of mechanical ventilation in patient b69983
T T T T T
* Times at which ventilator mode was recorded
== Beginning of ventilation period (detected)
=== End of ventilation period (detected)

First continous period
of mechanical ventilation

1 1 | 1 |
(] 10 20 30 40 50
Time (days)

Figure 3.1: Determining the duration of the first continuous mechanical ventilation period
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3.2.2 Identifying patients without congestive heart failure

Diagnosis of congestive heart failure (CHF) usually includes a pulmonary artery wedge pressure (PAWP) of
greater than 18 mmHg. However, the majority of patients examined in this thesis did not have a recorded
PAWP (86%), so patients with CHF were identified using ICD-9 code 428 and were subsequently excluded
from the study. Although the accuracy of using ICD-9 codes to identify CHF has not been properly tested,
this method has generally been accepted for retrospective clinical studies [26, 27, 28].

3.2.3 Calculating the PaO,/FiO, ratio

The PaO;y/FiO, trend was used to determine the quality of gas exchange in the lungs as a function of
time. This trend was calculated by finding the ratio of each PaOy blood gas measurement to the nearest
FiO; before the corresponding blood gas value. An example of PaOg, FiO2, and the calculated PaOy/FiO,
trend is shown in Figure 3.2. This patient developed hypoxemia refractory to oxygen on the 4th day of

mechanical ventilation.

Patient b70083
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Time since the beginning of mechanical ventilation (days)

Figure 3.2: Example of the PaO2/FiO; ratio (bottom) calculated from PaO; (top) and FiO; (middle).
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3.2.4 Determining the state of lung health at the beginning of mechanical ventilation

Patients who were mechanically ventilated for more than 48 hours and who did not have evidence of CHF
were then categorized into three groups based on their initial lung health: 1) no lung injury, 2) moderate
lung injury, or 3) severe lung injury. The PaOs/FiO criteria for each category is shown in Table 3.1, and

patients with severe lung injury at the outset of mechanical ventilation were excluded.

Table 3.1: Categories for initial lung health
Category Criteria during first 12hrs of mechanical ventilation
Healthy lungs 2 or more PaO,/FiO; > 300 mmHg, and
' 1 or less PaO2/FiO; < 300 mmHg

Moderate lung injury (ALI) 2 or more PaOy/FiO; < 300 mmHg, and
2 or more PaO2/FiO; > 200 mmHg, and
1 or less PaO2/FiO2 < 200 mmHg

Severe lung injury (ARDS) 2 or more PaOy/FiO; < 200 mmHg

3.3 Detecting the onset of ALI and ARDS

To study the risk factors for ALI and ARDS, we examined the following two outcomes: A) the development
of acute lung injury (ALI) in patients with healthy lungs at the outset, and B) the development of acute
respiratory distress syndrome (ARDS) in patients with healthy or moderately injured lungs at the outset.
We have excluded congestive heart failure as a potential cause for hypoxemia, so it remains for us to
detect an acute drop in PaOy/FiO; ratio and the appearance of bilateral infiltrates in chest x-rays. These

outcomes and their corresponding criteria are summarized in Table 3.2.

Table 3.2: Outcomes of interest
Outcome Initial lung health Criteria

ALI healthy lungs Not congestive heart failure based on ICD-9 codes
Pa0,/FiOy drops < 300 mmHg for 24hrs
Bilateral infiltrates/consolidations in chest x-ray reports

ARDS healthy lungs or Not congestive heart failure based on ICD-9 codes
moderate lung injury PaO2/FiOs drops < 200 mmHg for 24hrs
Bilateral infiltrates/consolidations in chest x-ray reports
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3.3.1 Detecting a deterioration in gas exchange

In patients without lung injury at the outset, we look for the development ALI defined by a drop of
PaO,/FiO; below 300 mmHg for 24 hours (note: this also includes the outcome that patients with healthy
lungs later develop ARDS). In patients with healthy or moderately injured lungs, we look for the de-
velopment of ARDS as characterized by a drop in PaOy/FiOy below 200 mmHg for at least 24 hours.
The two distinctions are made to independently asses the progression of healthy to injured lungs, and
healthy or partially injured to severely injured lungs. An example of PaOy/FiO, trend that represents the

development of ALI is shown in Figure 3.3.
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Figure 3.3: An example of gas exchange deterioration in ALI, indicated by a drop in PaOy/FiO2 below
300 mmHg for 24hrs or more.

3.3.2 Finding bilateral infiltrates in chest x-ray reports

In patients with a deteriorating gas exchange, chest x-ray (text) reports from 24 hrs before to 72 hours
after the drop in PaO;/FiO; ratio were assessed for the presence of bilateral infiltrates and/or lung con-

solidations. A patient had infiltrates if the report described “opacities,” “haziness,” “edema,” “inflamed,”
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“densities,” “ARDS,” etc. They had lung consolidations if “consolidation,” “atelectasis,” or “collapse” was
present. Infiltrates in one lung and atelectasis in the other was considered consistent with ALI/ARDS.
On average, approximately four reports were evaluated for each patient who had a deterioration in gas

exchange.

To aid in the diagnosis of bilateral disease, an algorithm was developed to automatically extract information
from the chest x-ray reports. This algorithm looked for bilateral infiltrates/consolidations by searching for
specific phrases the same way a human reader would. The diagnoses made by this algorithm were verified
manually by two expert intensivists (and a graduate student), and discrepancies were settled in a joint
reading of the reports. The manual evaluations were later used as a gold standard to assess the performance
of the text analysis algorithm; a detailed description of the design and evaluation of this algorithm is
presented in Appendix A. Patients were diagnosed with ALI or ARDS only if the drop in PaO2/FiO2 had

a corresponding chest x-ray report that indicated the presence of bilateral infiltrates/consolidations.

3.4 Extracting data for analysis

3.4.1 Data variables

Once the patient cohort was identified, physiologic information and ventilator settings were collected from
the first 24 hours of mechanical ventilation for all patients who were on the ventilator for > 48 hrs, who
did not have CHF, and who did not have ARDS at the onset of mechanical ventilation. If new lung injury
occurred on the first day, data were collected prior to the new injury. The potential risk factors for ALI and
ARDS included demographic variables (sex, age, weight, height), indicators of organ health and underlying
illness (SAP score, creatinine, ALT, pneumonia, sepsis), ventilator settings (Vr, Ppiqs, PIP, PEEP, FiOo,
RR) and indicators of gas exchange and metabolism (arterial pH, PaOg, PaCO3, bicarbonate and lactate).
Table 3.3 lists all the variables extracted for statistical analyses. When more than one ventilator setting was
present on a given day, the “worst” values (highest tidal volume, highest ventilator pressures) were selected.
For all non-ventilator variables, the first value after the outset of ventilation was collected. Presence of
pneumonia and sepsis as an underlying illness was identified by ICD-9 codes (480 - 486 for pneumonia, 038

for sepsis).

3.4.2 Calculated variables

Calculated variables include the predicted body weight (PBW), normalized tidal volume, static respiratory
compliance, SAP score, and PaO3/FiO; ratio. When patient height information was available (60% of
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Table 3.3: Variables extracted for statistical analysis

Variable Units Description

Demographics

sex M=1F=0 patient sex

age years patient age

weight kilograms patient weight

height inches patient height

Organ health

SAPS SAP units simplified acute physiology score
creatinine mg/dL a measure of kidney function

ALT units/L alanine aminotransferase, a liver enzyme
pneumonia present=1, absent=0 pulmonary edema due to a lung infection
sepsis present=1, absent=0 severe immune response to an infection
Crs mL/emH;0 static respiratory compliance

Ventilator settings

Vr mL set tidal volume

Vr/PBW mL/kg tidal volume per predicted body weight
Ppia: cmH;0 plateau pressure

PIP cmH,0 peak inspiratory pressure

PEEP cmH,0 positive end-expiratory pressure

FiOq fraction oxygen fraction

RR breaths/min total respiratory rate

Gas exchange-

PaO, mmHg partial pressure of O2 in arterial blood
PaCOs mmHg partial pressure of CO; in arterial blood
pH pH pH of arterial blood

bicarbonate mmol/L concentration of HCOj in arterial blood
lactate mmol/L concentration of lactate in arterial blood

records), predicted body weight was calculated from patient height using the following formulae [23]:

PBW)y in kg = 50 + 0.91 * (height in cm — 152.4) (3.1)

PBWrF in kg = 45.5 + 0.91 * (height in cm — 152.4) (3.2)

The normalized tidal volume was then calculated using predicted body weight:

Vr

Normalized tidal volume = PEW

(3.3)
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The static respiratory compliance C,, (a measure of lung elasticity) was calculated as:

Vr

Cre = B — PEEP

(3.4)

The Simplified Acute Physiology Score (SAPS) was determined using physiologic data from the first 24
hours of admission. This data included age, heart rate, systolic ABP, temperature, respiratory rate, urine
output, BUN, hematocrit, white blood count, glucose, potassium, sodium, bicarbonate, and Glasgow Coma
score. Each variable is mapped to a number between 0 and 4, and the scores are summed to give the SAP
score. The guidelines used to calculate SAPS is shown in Table 3.4.

Table 3.4: Variables and values used to calculate SAPS I score.
Variable add 0 add 1 add 2 add 3 add 4
Age (years) <45 45 - 55 55 - 65 65 - 75 > 75
HR (beats/min) 70 - 110 55 - 70 40 - 55 <40
110 - 140 140 - 180 | > 180
ABP sys (mmHg) 80 - 150 55 - 80 < 55
150 - 190 > 190
Temp (°C) 36-384 [34-36 32-34 30 - 32 < 30
38.4 - 38.9 38.9-41 | > 41
Resp rate (breaths/min) [ 11-24 |9-11 6-9 34 - 49 <6
24 - 34 cpap or vent > 50
Urine output (L/day) 0.7-35 |35-5 0.5-0.6 02-05 | <02
>5
BUN (mg/dL) 10 - 20 <10 80 - 100 100 - 155 | > 155
20 - 80
Hematocrit (%) 30 - 46 46 - 50 20 - 30 <20
50 - 60 > 60
WBC count (10°/mm?®) | 3-15 15-20 1-3 <1
20 - 40 > 40
Glucose (mg/dL) 70 - 250 | 250 - 500 | 50-70 30 - 50 < 30
500 - 800 | > 800
Potassium (mEq/L) 3.5-55 |3-35 25-3 6-7 <25
55-6 >7
Sodium (mEq/L) 130 - 150 } 150 - 155 | 120 - 130 110 - 120 | < 110
155 - 160 160 - 180 | > 180
HCOj3 (mEq/L) 20 - 30 10 - 20 10- 20 <5
30 - 40 > 40
Glasgow Coma Score >13 10-13 7-10 4-7 <4
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3.5 Statistical analyses - odds ratios and logistical regression

This section explains the theory behind odds ratios, logistic regressions, and the p-value. The odds ratio
is a useful tool for examining the relationship between a variable and a binary (“yes or no”) outcome,
and at the same time providing a confidence interval for the significance of that relationship [29]. The
variable being examined can be either a continuous variable (i.e. age) or binary variable (i.e. sex), which
give us tremendous flexibility in the type of data analysis performed. More importantly, odds ratios in
logistical regression allow us to examine the relative importance of variables in affecting an outcome. For
example, logistic regressions ultimately help us answer the question, “is tidal volume or airway pressure

more important in the development of ventilator-associated lung injury?”

3.5.1 The odds ratio

6-sided die 4-sided die

Figure 3.4: Illustrating the odds ratio using two dice.

The following example illustrates the concept of odds ratio. Consider rolling a normal 6-sided die 60 times
to produce, in this case, a total of 10 ones. From this observation, the probability of obtaining a one is

10/60. However, the odds of rolling a one is ?1,% = %, because the odds is defined as:
# of successes

Odds = # of failures

(3.5)

Now we roll a 4-sided die 60 times which, by chance, produces 15 ones. This result is shown in Table 3.5.

Table 3.5: Hypothetical results from rolling a 6-sided and 4-sided die
# of ones | # of other outcomes
6-sided die 10 50
4-sided die 15 45

The odds of rolling a one on the 4-sided die is ;ll-g- = % We can use the odds ratio (OR) to examine the

relationship between choosing the 4-sided die and obtaining the result one. The “ratio of the odds” is
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calculated as the odds for rolling a one using the 4-sided die divided by the odds associated with rolling a
one using the 6-sided die :

__odds of rolling one using 4-sided die  15/45 5
" odds of rolling one using 6-sided die = 10/50 ~ 3

OR =13 (3.6)

This calculation tells us that there is a higher odds associated with throwing a one if we pick the 4-sided
die as opposed to the 6-sided die. In general, there is a positive association between two observations if
the odds ratio is greater than 1 and a negative association when the odds ratio is between 0 and 1. Note
that we obtain the same odds ratio when asking the reverse question, “what are the odds that we picked
the 4-sided die given that the roll resulted in a one?” The odds ratio remains:

_ 15/10

OR =/

5
-3 (3.7)

This property makes the odds ratio a useful indicator of the strength of relationship between two observa-

tions. The general formula to calculate an odds ratio is given as:

odds of “success” in case 1

OR =
odds of “success” in case 2

(3.8)

3.5.2 Logistic regression

Logistic regression is a method by which we can examine the relationship between predictor variables and
a binary (“yes/no”) outcome. In the dice example we calculated the odds ratio between two binary events
(picking the 4-sided die and rolling a one). When the predictor variable is continuous (ie. patient age)
rather than binary (choosing 4-sided or 6-sided die), a logistic regression model can be used to calculate

the odds ratio associated with a certain change in the variable.

In univariate logistic regression, a single variable X is used to estimate the probability of success p using

the following formula:

zn(-l%z-)) =a+BX (3.9)

Given some observed data (a set of X and associated outcomes), the optimal values for o and 3 are
calculated to best fit the data. Various statistical software packages are available to determine these
coefficients, and Matlab was used for the calculations in this thesis. If X is a binary variable, it can be
represented as 0’s and 1’s in the logistic regression model. When we solve for p in equation 3.9, we obtain

an expression for the estimated probability:
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1

- T (3.10)

p

The graph of the estimated probability has a sigmoidal shape, as shown in Figure 3.5. A log plot of the

odds of success (7£) as a function X is also shown in Figure 3.5.

_
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Figure 3.5: Logistic regression curve has a sigmoidal shape, here oo = 0,8 = 1, giving p = 1_;;1__7 (top).
The odds of success Tg—}; (shown in log scale) increases exponentially as a function of X (bottom).

3.5.3 Odds ratios in logistical regression

Given the coefficients o and 3, we can calculate the odds ratio associated with a positive outcome and
particular increase in X, which we call Az:

odds of success at X + Az e tB(X+Ax) A
= =e

ORaz = odds of success at X = extBX T

(3.11)
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Again, if ORA, > 1, the positive outcome is more likely to occur at a higher X. The reverse is true if
ORA, < 1. To find the 95% confidence intervals for each odds ratio, we need the standard error associated
with each variable. The standard error, along with p-values and other performance measures, is calculated
by statistical packages that perform the logistic regression. The 95% confidence intervals for the odds ratio
is then calculated using the regression coefficient 8, the standard error SE, and a given change in the

variable Az:

ORzzper — (B+1.96+SE}Az (3.12)
ORYYer — eB—1.96+SE)sAx (3.13)

3.5.4 Multivariate logistic regression model

To examine the relationship between multiple variables and a particular binary outcome, we can use a

multivariate logistic regression model with the following formula:
ln(—l—{—-z—)) =a+pXi+BXe+...+ BuXn (3.14)

In this equation, X; is the value of the i** variable, p is the estimated probability of a particular outcome,
and the B;’s are coefficients associated with the i** variable. The optimal o and (’s are again obtained

computationally, and the odds ratios can be calculated in the same manner as in the univariate regression.

3.5.5 The p-value

It is important to discuss the meaning of the p-value: the p-value is the probability that the results
observed were due to chance alone. The smaller the p-value, the higher the significance level and stronger
the evidence against the null hypothesis (the idea that the results were due to random chance) [30]. A
suggested interpretation of this statistic is shown in Figure 3.6. Historically, p = 0.05 has been used as the
threshold below which results may be considered significant [31], and results with p < 0.001 provide even
stronger evidence for a significant result. When the p-value is below 0.05, the 95% confidence intervals for

odds ratios are both above 1 for a positive relationship and below 1 for a negative relationship.
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1.0

P value

Weak evidence against the null hypothesis

0.1

0.01

0.001

Strong evidence against the nuil hypothesis

0.0001

Figure 3.6: Suggested interpretation of p-values from published medical research, adapted from [30].

3.5.6 Performing regressions

Univariate and multivariate logistical regressions were used to find correlations between predictor and out-
come variables. The outcomes of interest were development of ALI or ARDS after the onset of mechanical
ventilation. In the univariate analysis odds ratios were calculated per one standard deviation increase
in predictor variables. Statistically significant variables (P < 0.05) were then considered for inclusion in
a multivariate model. A forward stepwise and backward stepwise logistic regression were performed to
find the optimal model in which all contained variables were statistically significant predictors of ALI and
ARDS. SAPS and initial Pa0; /FiO; were forced into the multivariate model to control for severity of

illness.

To further examine the relative importance of ventilator settings as risk factors for ALI and ARDS, a second
multivariable model was created using the following variables: tidal volume, plateau pressure, PEEP,
Pa0Oy/FiO,, SAPS, and patient weight. In multivariate analyses only, missing values were filled using
averages calculated from the entire cohort of patients without ARDS at the onset of mechanical ventilation.
All data analyses were performed using Matlab (http:/ /Www.mathworks.com/products/matlab/) and its

supporting statistical toolboxes.
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Chapter 4

Results

This chapter presents the results of statistical analyses for two outcomes of interest: (1) the progression from
healthy lungs to acute lung injury (ALI) and (2) the development of acute respiratory distress syndrome
(ARDS) in patients with healthy or moderately injured lungs at the outset of mechanical ventilation. Both
analyses include a comparison between patients who did and did not develop new ALI/ARDS, univariate
and multivariate analyses of potential risk factors, and diagrams to visualize the relationship between risk
factors and new lung injury. In addition, the characteristics of the patient cohort are described to give a

brief overview of patients who require ventilator therapy in the intensive care unit.

It is important to note that the analyses for the ARDS cohort have more statistical power than that of the
ALI cohort simply because the number of patients in the former group is larger. This difference will affect

the way results are interpreted, and the discussion of these results are presented in the following chapter.

4.1 Characteristics of the patient cohort

The MIMIC-II database contains a total of 17,493 patients admitted to Beth Israel Deaconess Medical
Center (BIDMC) between 2001 and 2005. Of these patients, 2624 required mechanical ventilation for
longer than 48 hours, and a subset (1366) did not have congestive heart failure (CHF) during their stay.
The average age in these 1366 patients was 59 years and the average length of ICU stay was 13 days.
When broken down by location, 29% of patients were in medical ICU, 28% in surgical ICUs, 28% in the
cardiac surgery recovery unit, and 15% in coronary care units. The categorization of all patients from the

database is shown in Figure 4.1.



4.1 Characteristics of the patient cohort

All patients in MIMIC-II database admitted between 2001 and 2005 (n = 17,493)

I

Patients intubated for mechanical ventilation (n = 6977)

Patients mechanically ventilated > 48hrs (n = 2624)

No CHF based on ICD-9 codes (n = 1366)

ALl (not ARDS)._ 0}
present atonset of
i \

No lung injury at A
the onset of mechanical
ventilation (n = 416)

Worsening gas
exchange (n = 185)

Figure 4.1: Patient distribution from the MIMIC-II database. This study examined the development of
ALI in patients initially without lung injury (A to B), and the development of ARDS in patients initially

without ARDS (A and D to C and E)
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Of the 1366 patients mechanically ventilated for longer than 48hrs and who did not have CHF during
their stay, 416 had no lung injury at the onset of mechanical ventilation, 373 had moderate injury, and
577 had severe lung injury. The average length of ventilator therapy increased with the severity of lung
sickness (8.6 days in healthy lungs, 9.6 days in moderate injury, 11.2 days for severe injury). Similarly, the
average length of ICU stay increased for patients with sicker lungs (11.7 days, 12.3 days, and 14.6 days
respectively). The average weight was also higher among patients with sicker lungs (75 kg, 83 kg, and 82

kg respectively). These and other patient characteristics are summarized in Table 4.1.

Table 4.1: Characteristics of patient cohort, grouped by initial lung health.

All ventilated > No lung injury at ALI at outset ARDS at outset

48 hrs (n=1366)° outset (n=416)° (n = 373)° (n = 577)°
Age (years) 59 + 18 (16 - 99) 58 £20 (17-99) 62+ 17(16-91) 58 + 18 (16 - 92)
Males (n, %) 787, 58% 220, 53% 217, 58% 350, 61%
Height (cm) 170 £+ 16.7 168 + 15 171 + 22 170 £ 13.3
Weight (kg) 81 + 23 75 + 21 83 + 24 82 & 22
SAPS? 9.3+29 9.2+3 9.3+ 28 94+ 3
Days of ICU stay® 13.1 + 10.1 11.7 £ 8.9 12.3 £ 8.7 14.6 £ 114
Days of mech. 10 £ 9.6 86 £ 7.6 9.6 + 8.8 11.2 £ 11

ventilation?

2excludes patients with congestive heart failure according to ICD-9 codes; *SAPS score based on data from first 24 hours of
ICU stay; “length of stay in a single care unit; %length of first continuous mechanical ventilation period.

4.2 Development of Acute Lung Injury (ALI)

Of 416 patients without lung injury on the first day of mechanical ventilation, 185 had worsening PaO3/FiOs,
of which 120 (29%) also had bilateral infiltrates and met ALI criteria. The average initial PaOz/FiO; in
all patients without lung injury at the outset was 407 + 101 mmHg, and a histogram of these values is
shown in Figure 4.2. The average time until the onset of ALI was 2.6 days from the beginning of mechanical
ventilation. Figure 4.3 shows an abnormal case of a patient with healthy lungs at the outset but had one
Pa03/Fi0; < 200 mmHg. Abnormal readings such as this may be due to random error in laboratory

tests or from human error.
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Figure 4.2: Distribution of initial PaO2/Fi0Oy in 416 patients without ALI at the outset of ventilation.
The inclusion criteria for this cohort was 2 values PaOy/FiOs > 300 and 1 or less PaOy/FiOs < 300
mmHg.
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Figure 4.3: Example of patient with initial PaO,/FiO; below 200 mmHg but who did not have lung injury
at the outset.



Results

Table 4.2 compares demographic information, severity of illness, and initial ventilator settings between the
patients who did and did not eventually develop ALI. On average, patients who acquired ALI required
more days of mechanical ventilation (11 days vs. 8 days), had a longer ICU stay (15 days vs. 10 days),
had higher weight (80 kg vs. 73 kg), were more likely to have pneumonia (44% vs. 31%), and were more
likely to have sepsis (29% vs 15%). The initial PaOy/FiO2 ratio was also lower in patients who eventually
developed ALI (384 mmHg vs. 417 mmHg).

Table 4.2: Characteristics of 416 patients initially without ALI

Variable Don’t develop ALI  Develop ALI
" (n = 296) (n = 120)
Age (years) 57.9 + 20.5 58.7 + 19.9
Sex (male %) 53% 55%
Weight (kg) 73.3 £ 20.2 79.6 £+ 22.6
Height (inches) 65.5 + 6.8 66.9 £ 4.4
Length of stay (days) 10.5 + 8 14.7 + 10.2
Length of ventilation (days) 7.5 + 6.6 11.2 + 9.2
SAPS (SAPS score) 9.1+29 9.6 +3
Vr (mL) 617 + 104.6 630.3 £+ 116.9
PEEP (cmH;0) 56 +1.9 59+ 2.1
PIP (cmH,0) 28.5 + 7.7 314491
Pyiat (cmmH,0) 212 £ 56 923.5+ 5.8

Pa0O3/FiO; (mmHg)

416.5 = 107.6

383.8 &+ 100.8

PaCOy (mmHg) 3839 39 +£11.3
Crs (mL/cmH,0) 48.5 + 17.5 44.2 + 165
Pneumonia (%) 31% 44%
Sepsis (%)° 15% 29%
ARDS (%)° 19% 28%

2Underlying illnesses according to ICD-9 codes.

4.2.1 Univariate analysis of risk factors for ALI

Univariate continuous-variable logistical regression revealed the following variables to be associated with
the development of ALL: Ppqt (odds ratio 1.5 per standard deviation, 95% confidence interval 1.4 - 1.8),
sepsis (OR 2.4 for presence of sepsis, 95% CI 1.4 - 3.9), PIP (OR 1.4 per std, 95% CI 1.1 - 1.8), patient
weight (OR 1.3 per std, 95% CI 1.1 - 1.7), pneumonia (OR 1.8 for presence of pneumonia, 95% CI 1.1 -
2.7), lactate (OR 1.3 per std, 95% CI 1.1 - 1.6), and C,s (OR 0.76 per std, 95% CI 0.6 - 1.0). V7 and Vp
per predicted body weight (p = 0.265 and 0.740) were not found to be significantly associated with new

ALI Table 4.3 summarizes the odds ratios and p-values from univariate logistic regressions.

A visualization of the relationship between day one plateau pressure and new lung injury is shown in Figure

4.4. The percentage of patients who develop ALI increases from 20% to 40% as Ppiqt increases from 16 to
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Table 4.3: Univariate analysis of risk factors for ALI in 416 patients without ALI at the outset of mechanical
ventilation. Variables are listed in order of statistical significance (lowest to highest p-value).

Variable Mean Standard Dev Odds Ratio per STD p-value
(STD) (95% confidence interval)
Ppiat 21.9 5.8 cmH20 1.48 (1.19 - 1.84) < 0.001
Sepsis® - - 2.36 (1.43 - 3.92) 0.001
PIP 29.4 8.2 cmH,0 1.41 (1.13 - 1.75) 0.002
‘Weight 75.2 21.1 kg 1.34 (1.08 - 1.66) 0.008
Pneumonia® - - 1.76 (1.13 - 2.71) 0.012
Lactate 2.8 2.3 mmol/L 1.31 (1.05 - 1.64) 0.016
Crs 47.3 17.3 mL/cmH,0 0.76 (0.60 - 0.97) 0.024
SAPS 9.2 3.0 score 1.20 (0.97 - 1.48) 0.093
Height 66.0 6.1 inches 1.37 (0.94 - 2.00) 0.097
PEEP 5.7 2.0 cmH,0 1.16 (0.95 - 1.42) 0.151
pH 74 0.1 pH 0.86 (0.69 - 1.06) 0.155
Creatinine 1.2 1.2 mg/dL 1.15 (0.94 - 1.40) 0.179
Vr 620.9 108.4 mL 1.13 (0.91 - 1.40) 0.265
Bicarbonate 23.1 5.1 mmol/L 0.91 (0.74 - 1.13) 0.411
ALT 170.1 550.6 units/L 0.89 (0.65 - 1.21) 0.451
PaCO, 38.5 9.7 mmHg 1.08 (0.88 - 1.33) 0.468
Sex (if male)® - - 0.92 (0.72 - 1.69) 0.640
Age 58.1 20.3 years 1.04 (0.84 - 1.29) 0.733
Vr/PBW 10.2 2.3 mL/kg 0.96 (0.73 - 1.25) 0.740
PaO 257.0 115.8 mmHg 1.03 (0.83 - 1.27) 0.804
Resp rate 20.8 6.1 bpm 0.98 (0.79 - 1.21) 0.849

% Odds ratio calculated for presence of sepsis, pneumonia, and male sex. SDT, standard deviation; PIP, peak inspiratory pres-
sure; Ppiat, plateau pressure; PEEP, positive end-expiratory pressure; Vr, tidal volume.; SAPS, simplified acute physiology
score; PBW, predicted body weight; C.;, static respiratory compliance.
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32 mmHg. The association between high plateau pressure and incident ALI in the context of other risk

factors is explored in multivariate regressions.
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Figure 4.4: Day one plateau pressures in 416 patients without ALI at the onset of mechanical ventilation
(top), and the risk of developing ALI as a function of Py (bottom).

4.2.2 Multivariate analysis of risk factors for ALI

Variables with p-values of less than 0.05 from univariate regressions (Pp,¢, sepsis, PI P, pneumonia, lactate,
and C;s) were considered for multivariate regression analysis using a forward-search and backward-search
method. Both searches produced an optimal model that included Ppiat, lactate, and sepsis. PaOy/FiOs
and SAPS were then added to model to control for severity of illness, giving the final combination of
variables: sepsis (OR 1.99, p = 0.011), Ppiqa¢ (OR 1.32 per std, p = 0.014), PaO2/FiO5 (OR 0.75 per
std, p = 0.31), lactate (OR 1.23 per std, p = 0.049), and SAPS (OR 1.16 per STD, p = 0.185). All
variables except for SAPS remained significant predictors of ALI with a p-value < 0.05. This model is
shown in Table 4.4.

Another multivariate model was created to examine the relative contributions of the ventilator pressures
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and tidal volumes to the development of ALI. This analysis, shown in Table 4.5, included the following
variables: Vr, Ppq:, PEEP, patient weight, PaOz/FiO3, and SAPS. PIP is known to be correlated with
Pyiat (R2 = 0.53, p < 0.001). Including PIP and P4t in the same model decreases the statistical power
of both variables as risk factors for lung injury, so only one (Ppi,:) was included. The second multivariate
regression shows that Ppiat (OR 1.34 per std, p = 0.016) and PaO2/FiO2 (OR 0.75 per std, p = 0.03)
remained significant predictors of ALI while V7, PEEP, weight, and SAPS did not (p > 0.05).

Table 4.4: Multivariate regression of risk factors for ALI in 416 patients initially without ALI. Optimal
model was achieved through forward and backward search of risk factors found in univariate analysis.
Variable Mean Standard Dev Odds Ratio per STD p-value

STD (95% confidence interval)
Sepsis® - - 1.99 (1.16 - 3.36) 0.011
Ppiar 21.9 5.6 cmH,0 1.32 (1.06 - 1.66) 0.014
Pa0O,;/FiO; 407.1 106.6 mmHg 0.75 (0.57 - 0.97) 0.031
Lactate 2.8 2.1 mmol/L 1.23 (1.00 - 1.51) 0.049
SAPS 9.2 3.0 SAP score 1.16 (0.93 - 1.45) 0.185

SDT, standard deviation; SAPS, simplified acute physiology score. *Odds ratio calculated for presence of sepsis.

Table 4.5: Multivariate analysis of ventilator-associated risk factors for ALI in 416 patients without ALI
at the outset. PaO,/Fi0O; and weight were included to control for severity of illness.
Variable Mean Standard Dev Odds Ratio per STD p-value
(95% confidence interval)

Prlat 21.9 5.6 cmH,0 1.34 (1.06 - 1.71) 0.016
Pa03/FiO; 407.1 106.6 mmHg 0.75 (0.57 - 0.97) 0.030
SAPS 9.2 3.0 SAP score 1.24 (0.9 - 1.55) 0.056
Weight 75.2 20.5 kg 1.27 (0.98 - 1.64) 0.066
Vi 620.9 106.3 mL 0.95 (0.73 - 1.23) 0.675
PEEP 5.7 1.9 cmH,0 0.99 (0.79 - 1.24) 0.926

SDT, standard deviation; SAPS, simplified acute physiology score.
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4.3 Development of Acute Respiratory Distress Syndrome (ARDS)

This section describes the patient cohort used to identify risk factors for ARDS. Of 789 patients with
moderate or no lung injury (but not ARDS) at the beginning of mechanical ventilation, 305 had worsen-
ing PaOy/Fi0q, of which 152 (19%) also had bilateral infiltrates and met ARDS criteria. The average
Pa0y/FiO; at the outset was 302 + 110 mmHg, and a histogram of these values is shown in Figure 4.5.
The average time until the development of ARDS was 3.4 days from the beginning of ventilator therapy.
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Figure 4.5: Distribution of PaOy/FiO, in 789 patients without ARDS at the outset. Inclusion criteria was
2 PaO;/FiOy > 200 and 1 or less PaO3/Fi0O; < 200 mmHg in the first 12hrs of mechanical ventilation.

Table 4.6: Characteristics of 789 patients initially without ARDS.

Variable Don’t develop ARDS Develop ARDS
(n = 636) (n = 152)
Age (years) 60.3 £ 19.1 57.9 + 18.2
Sex (male %) 54% 50%
Weight (kg) 77.4 £ 224 85.7 + 24.2
Height (inches) 66.4 & 5.6 67.8 £ 11.8
Length of stay (days) 11.1 &+ 8.1 15.5 + 10.6
Length of ventilation (days) 8274 12.8 +£ 10.3
SAPS (score) 9.2+ 238 9.5+ 3
Vr (mL) 618 + 112 651.7 £ 119.1
PEEP (cmH;0) 58+ 2 6.6 + 2.8
PIP (cmH,0) 30 + 8.2 338+ 9
Ppiat (cmH0) 22.5 £ 6.3 25.4 £ 5.9
Pa0O3/FiO; (mmHg) 279 + 93 230.2 £ 85.3
PaCOy (mmHg) 39.6 £ 10.9 40.5 £ 11.1
Crs (mL/cmH30) 45.7 + 185 41.9 +14.7
Pneumonia (%)® 36% 44%
Sepsis (%) 20% 32%
ARDS (%)* 21% 33%

“Underlying illnesses according to ICD-9 codes.
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Table 4.6 compares demographic information, severity of illness, and day one ventilator settings between
patients who did and did not later have acute respiratory distress syndrome. On average, those who
developed ARDS required a longer period of mechanical ventilation (12.8 vs. 8.2 days), had a longer
hospital stay (15.5 vs. 11.1 days), had a higher incidence of pneumonia (44% vs. 36%) as well as sepsis
(32% vs 20%), and had a lower initial PaOy/FiOy (302 vs. 355 mmHg).

4.3.1 Univariate analysis of risk factors for ARDS

Univariate logistic regressions identified the following variables to be well associated with the development
of ARDS (Table 4.7): PIP (OR 1.5 per std, 95% CI 1.3 - 1.8), Ppiat (OR 1.5 per std, 95% CI 1.3 - 1.9),
patient weight (OR 1.4 per std, 95% CI 1.2 - 1.7), PEEP (OR 14 per std, 95% CI 1.2 - 1.7), sepsis
(OR 1.95, 95% CI 1.3 - 2.9), Vor (OR 1.4 per std, 95% CI 1.1 - 1.7), pneumonia (OR 1.8, 95% CI 1.2 -
2.7), blood pH (OR 0.8 per std, 95% CI 0.6 - 0.9), and lactate (OR. 1.2 per std, 95%CI 1.0 - 1.4).

Table 4.7: Univariate analysis of risk factors for ARDS in 789 patients without ARDS at the outset of
mechanical ventilation. Variables are listed in order of statistical significance (lowest to highest p-value).

Variable Mean Standard dev Odds ratio per STD p-value
(95% confidence interval)
PIP 30.7 8.5 conH2 0O 1.53 (1.28 - 1.84) < 0.001
Ppiat 23.1 6.3 cmH-20 1.54 (1.28 - 1.85) < 0.001
Weight 79 23.0 kg 1.39 (1.18 - 1.65) < 0.001
PEEP 59 2.2 cmH,0 1.35 (1.15 - 1.58) < 0.001
Sepsis - - 1.95 (1.31 - 2.88) < 0.001
Vr 624.6 114.2 mL 1.36 (1.13 - 1.65) 0.001
Pneumonia - - 1.82 (1.22 - 2.69) 0.002
pH 7.4 0.1 pH 0.77 (0.65 - 0.91) 0.003
Lactate 2.8 2.4 mmol/L 1.19 (1.00 - 1.41) 0.044
Creatinine 1.2 1.2 mg/dL 1.14 (0.97 - 1.33) 0.110
Height 66.7 7.6 inches 1.22 (0.95 - 1.56) 0.120
Sex (if male) - - 1.32 (0.92 - 1.90) 0.126
Bicarbonate 23.5 5.4 mmol/L 0.88 (0.73 - 1.05) 0.158
Age 59.9 18.9 years 0.88 (0.74 - 1.05) 0.163
PaOq 118 46.1 mmHg 0.88 (0.73 - 1.06) 0.182
Crs 45.7  39.4 mL/cmH,0 0.87 (0.70 - 1.08) 0.216
SAPS 9.2 2.9 SAPS 1.11 (0.93 - 1.33) 0.235
PaCO, 39.7 10.9 mmHg 1.09 (0.92 - 1.29) 0.342
Vi/PBW 10.1 2.5 mL /kg 0.94 (0.76 - 1.16) 0.559
ALT © 150.1 503.1 units/L 0.95 (0.75 - 1.19) 0.641
Respiratory Rate  21.4 6.2 bpm 0.97 (0.82 - 1.17) 0.779

SDT, standard deviation; PIP, peak inspiratory pressure; Ppiat, plateau pressure; PEEP, positive end-expiratory pressure;

Vr, tidal volume.; SAPS, simplified acute physiology score; PBW, predicted body weight.
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Variables that were not significant predictors of ARDS included patient age, sex, height, SAPS, V/PBW
respiratory rate, PaOg, PaCOg, creatinine, bicarbonate, and C,s. These variables all had a p-value greater

than 0.05 in univariate analysis.

It is meaningful to visually examine the relationship between risk factors and subsequent development of
lung injury. Figure 4.6 shows the effects of differing day one plateau pressures; the percentage of patients
who develop ARDS increases from 10% to 30% as Ppjq¢ increases from 16 to 32 mmHg. PIP, a ventilator

setting known to be well correlated with plateau pressure, exhibits a similar trend as shown in Figure 4.7.
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Figure 4.6: Day one plateau pressure in 789 patients without ARDS at the outset of ventilation (top), and
the risk of developing ARDS as a function of P4 (bottom).
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Figure 4.7: Day one peak inspiratory pressure in 789 patients without ARDS at the outset of ventilation
(top), and the risk of developing ARDS as a function of PIP (bottom).

There is a more pronounced relationship between initial V7 and development of ARDS (Figure 4.8) than
that associated with the development for ALI. Note that the tidal volume is set in intervals of 50 mL, and
the percentage of patients who acquire ARDS increases from 10% to 30% as Vr increases from 450 to 800
mL. When examining PEEP, we see that most patients are given a PEEP of 5 cmH50, and the risk for
ARDS increases from 18% to 30% as PEEP increases from 5 to 10 cmHy0 (Figure 4.9).

Two interesting physiologic predictors of ARDS were patient weight and arterial pH. The percent of patients
developing ARDS increases from 10% to 30% as patient weight increases from 50 to 100 kg, shown in Figure
4.10. The risk for ARDS increases from 10% to 30% as initial arterial pH decreases from 7.45 to 7.15,
however the risk is also high (near 40%) for values of pH above 7.53 (Figure 4.11).
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Figure 4.8: Day one tidal volume in 789 patients without ARDS at the outset of ventilation (top), and the
risk of developing ARDS as a function of Vp (bottom).
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Figure 4.9: Day one positive end-expiratory pressure in 789 patients without ARDS at the outset of
ventilation (top), and the risk of developing ARDS as a function of PEEP (bottom).
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Figure 4.10: Patient weight in 789 patients without ARDS at the outset of ventilation (top), and the risk
of developing ARDS as a function of weight (bottom).

150 T T T ! !

8

# of patients
8

7 7.1 7.2 7.3 7.4 75
arterial pH

T T I T

~
o

{ - <0
{ I » >= 10

----- - Logistical fit, odds ratio = 0.77 /0.1 pH

[
o

2]

% of patients who develop ARDS
P
o

7 7 7.2 7.3 7.4 75
arterial pH
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risk of developing ARDS as a function of pH (bottom).
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4.3.2 Multivariate analysis of risk factors for ARDS

Variables found to be significantly associated with ARDS in univariate analysis (PIP, Ppjqt, weight, PEEP,
sepsis, Vi, pneumonia, arterial pH, and lactate) were considered for the multivariate regression model. Sim-
ilar to the analysis for ALI, the optimal multivariate model was found by a forward-search and backward-
search on the significant variables. PaQOy/FiO, and SAPS were again added to control for severity of
illness. Both search methods produced a model that included PIP (odds ratio 1.35 per standard devia-
tion, p = 0.002), sepsis (OR 1.8, p = 0.005), Vr (OR 1.27 per std, p = 0.015), and pH (OR 0.83 per std,
p = 0.053). This model, shown in Table 4.8, did not include Vr /PBW.

One last multivariate model examined the relative importance of different ventilator settings as risk factors
for ARDS (Table 4.9): Ppq:, PEEP, Vr, PIP, patient weight, PaO2/Fi0O,, and SAPS. In this analysis,
Ppiat (OR 1.27 per std, p = 0.018) and PaOz/FiO2 (OR 0.64 per std, p < 0.001) remained significant
predictors while V (OR 1.20 per std, p = 0.081), PEEP (OR 1.16, p = 0.083), and weight (OR 1.14, p =
0.195) did not. PIP correlated well with Ppg; (R? = 0.61, p < 0.001) and was not included in this model.

Table 4.8: Multivariate regression of risk factors for ARDS in 789 patients initially without ARDS. Optimal
model was achieved through forward and backward search of risk factors found in univariate analysis.
Mean Standard Dev Odds Ratio per STD p-value
(95% confidence interval)

Pa0O,/FiO, 345.5 115.9 mmHg 0.62 (0.49 - 0.77) < 0.001
PIP 30.7 8.2 cmH;0 1.35 (1.12 - 1.62) 0.002
Sepsis - - 1.81 (1.20 - 2.70) 0.005
Vi 623.5  111.9 mL 1.27 (1.05 - 1.55) 0.015
pH 7.4 0.1 pH 0.83 (0.70 - 1.00) 0.053
SAPS 9.2 2.9 score 1.11 (0.92 - 1.33) 0.291

SDT, standard deviation; SAPS, simplified acute physiology score. * Odds ratio calculated for presence of underlying illness.

Table 4.9: Multivariate analysis of ventilator-associated risk factors for ARDS in 789 patients without
ARDS at the outset. PaO3/Fi0O, and weight were included to control for severity of illness.
Mean Standard Dev Odds Ratio per STD p-value
(95% confidence interval)

Pa0,/FiO; 345.5 115.9 mmHg 0.64 (0.51 - 0.80) < 0.001
Ppiat 23.1 6.1 cmH,0 1.27 (1.04 - 1.54) 0.018
SAPS 9.2 2.9 score 1.18 (0.98 - 1.42) 0.076
Vr 623.5 111.9 mL 1.20 (0.98 - 1.48) 0.081
PEEP 5.9 2.2 cmH,0 1.16 (0.98 - 1.38) 0.083
Weight 79.0 22.4 kg 1.14 (0.94 - 1.38) 0.195

SDT, standard deviation; SAPS, simplified acute physiology score.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

This retrospective cohort study sheds new light on the risk factors for ALI and ARDS in patients who were
mechanically ventilated for longer than 48 hours in the ICU. In 416 patients who had healthy lungs at the
outset, 120 (29%) later developed ALI. Of 789 patients with healthy or moderately injured lungs at the
outset, 152 (19%) developed ARDS. Several associations were found between day one ventilator settings
and new ALI/ARDS, suggesting that ventilator-associated lung injury may be a preventable illness in some
cases. However, the complexity of ARDS and the numerous physiologic risk factors make the disease rather
difficult to predict and treat in the ICU. The ventilator settings and physiologic variables associated with

new lung injury are discussed in the following sections.

5.1.1 Plateau pressure (Py,:) and peak inspiratory pressure (PIP)

Ventilation with high airway pressure is an important risk factor for respiratory failure. In patients without
lung injury at the outset, high Py, was significantly associated with the development of ALI in univariate
analysis (p < 0.001) as well as when adjusted for Vz, PEEP, patient weight, PaO2/FiO,, sepsis, lactate,
and SAPS (p = 0.016). Similarly, high Py, (and PIP) was significantly associated with ARDS (p <
0.001), even when controlled for Vr, PEEP, patient weight, PaO;/FiO2, sepsis, SAPS, and pH (p =
0.018). Ppiqt is the most direct measurement of the pressures sustained by the lung alveoli. PIP and Fpja
were well correlated (R? = 0.61), suggesting that a high PIP is likely to produce an elevated Ppq: and
thus increases the chance for lung overdistention. These results suggest that Py, and PIP are the most

critical ventilator-associated risk factors for the development of new ALI and ARDS.

5.1.2 Positive end-expiratory pressure (PEEP)

PEEP was not an important risk factor for ALI/ARDS, especially when examined in the presence of Ppq;
and/or PIP. In patients with healthy lungs at the outset, PEEP was not significantly associated with
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the development of ALI (p = 0.151). In patients without ARDS at the outset, PEEP was associated new
ARDS in univariate analysis (p < 0.001). However, this relationship did not remain significant when it
was examined in the context of Py, PaO2/FiO2, Vr, SAPS, and weight (p = 0.926). In addition, PEEP
was not selected for the optimal multivariate model used to predict new ARDS (this model included
PIP, sepsis, Vr, and arterial pH). These results suggest that high PEEP alone is not a risk factor for
ventilator-associated ALI or ARDS.

5.1.3 Tidal volume (V) and normalized tidal volume (Vr/PBW)

There are mixed results regarding tidal volume/normalized tidal volume and their associations with new
lung injury. The normalized tidal volume (V3 /PBW) was not associated with development of ALI or ARDS
(p = 0.740 and p = 0.559 respectively) and was not considered for multivariate analysis. In addition, the
set tidal volume (Vr) was not a risk factor for ALI in patients without lung injury at the outset (p = 0.265).
On the other hand, V7 was a significant predictor of ARDS in univariate analysis (p < 0.001) and remained
significant in the optimal multivariate model that included PIP, PaO2/FiO,, sepsis, pH, and SAPS (p =
0.015). This begs the question, “Why was tidal volume important in some cases and not in others?” The
answer partially lies in differences between the patients examined: the ARDS analysis used a larger group
of patients who, on average, had sicker lungs at the outset. A larger population increases the statistical
power of the analysis. In addition, patients with sicker lungs were more likely to develop further lung injury
and may have been ventilated at higher tidal volumes at the outset. The two factors combined may account
for the relationship between Vg and development of ARDS. However, when we examine V7 in the context
of Ppiat, patient weight, PaOs/FiOz, PEEP, and SAPS, this relationship loses significance (p = 0.081).
Overall, our results suggest that high tidal volume is associated with ARDS, but the relationship becomes
less significant when examined in the context of airway pressures and patient weight. This observation
shows the importance of analyzing variables in context of each other using multivariate methods. In this
study, high Vr was found to be a significantly associated with ARDS but not ALI. Furthermore, tidal
volume was less important compared to Py, and PIP as a risk factor for ARDS.

5.1.4 Results in context of established practice

The finding that ventilator pressures play a greater role in the development of ARDS than tidal volume is
supported by existing literature which emphasizes the adverse effects of high airway and transpulmonary
pressures [18, 32, 33, 34]. However, this finding also challenges the notion that high tidal volumes in the
presence of normal pressures can cause lung injury. Previous studies conclude that tidal volume is the most
important risk factor for development of ventilator-induced lung injury [23, 24]. However, these studies

did not include patient weight and airway pressure as continuous variables in their multivariate models.
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High PEEP was also associated with development of ARDS in univariate regression, but this association
loses significance in the presence of plateau pressure and PaOs/FiO,. Thus it is likely that high PEEP is
associated with higher plateau pressures and is a marker of sicker patients. Historically, PEEP is thought
to be lung protective [11, 12| and is often used to recruit collapsed alveoli [35, 36]. However, the results of
this study do not point to the protective nature of PEEP.

5.1.5 Physiological risk factors

Physiological risk factors for new ARDS include patient obesity, blood acidemia, and high lactate. Obesity
decreases respiratory system compliance [37], so obese patients may require higher ventilator pressures
to deliver the same tidal volume. The data suggests that patient weight correlates somewhat with tidal
volume (R? = 0.19, p < 0.001), and to a lesser extent with set peak inspiratory pressure (R? = 0.05,
p < 0.001). Given this information, the exact relationship between weight, tidal volume, and airway
pressures remains difficult to discern clearly. In addition, obesity may increase the risk for ARDS through
metabolic/systemic effects rather than solely through mechanical effects on the respiratory system. An
important randomized clinical trial suggests that obesity may be lung-protective in some cases [10], but
our results do not support this hypothesis. Other physiologic risk factors such as low pH and high lactate
are characteristic of metabolic acidosis, a condition known to be predictive of acute lung injury in severely
traumatized patients [38]. Low pH and high lactate were associated with ARDS, but these associations
became less significant in the presence of low PaO2/FiO2, high Py, and high Vp. This suggests that
the common practice of using the ventilator to correct for a metabolic acidosis is a potentially harmful
intervention if high airway pressures are required. Clinicians are beginning to use permissive hypercapnia

as a way to avoid high tidal volumes and high airway pressures in patients with ALI/ARDS ([39].

5.1.6 Differences in the patient cohort for analysis of ALI and ARDS

When examining risk factors for the development of ALI and ARDS, we found the associations between
day 1 ventilator settings and new ARDS to have more statistical power (lower p-values) compared to those
associated with new ALI For example, PEEP was a significant predictor of ARDS (p < 0.001) but not
of ALI (p = 0.151). There are two reasons for these observations. First, the number of patients in the
ARDS analysis (789) was larger than that in the ALI analysis (416). A larger group of patients gives more
statistical power to the ARDS analysis. Second, the ARDS analysis was based on patients who had sicker
lungs at outset of mechanical ventilation compared to that of the ALI analysis. These patients were likely
to be given higher tidal volumes/airway pressures and were also predisposed to developing further lung
injury. Both reasons contribute to the discrepancies observed between the two patient groups. However,

the idea that higher ventilator settings may be an indicator of sicker patients should be addressed by
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multivariate models that control for severity of lung and systemic illness.

5.1.7 Recognized limitations

There are several limitations in the current study. First, although data were validated at collection by the
bed-side nurses and respiratory therapists, they were not collected by scientific investigators and thus may
contain errors. The sheer size of the database should correct for such random errors, assuming inaccuracies
are random rather than systematic. Secondly, we assume random variability in initial ventilator settings,
but there always exists the possibility that higher pressures and tidal volumes were chosen deliberately
to correct underlying hypoxemia, acidemia, and non-cardiogenic pulmonary edema. Knowing this, we
have attempted to adjust for severity of illness by including PaO2/FiO,, SAPS, and other indicators
of underlying illness in the multivariate models. Thirdly, although we used a large patient population
in this study, data were not complete in all records. For example, height information was available in
60% of patients, preventing us from calculating tidal volume per predicted body weight for all patients.
Missing data reduces the statistical significance of univariate analyses and compels investigators to fill
in missing values for multivariate analyses. Finally, PaO;/FiOy values were available only when arterial
blood gases were measured, and the accuracy of our patient classifications (no ARDS or ARDS at the
outset of ventilator therapy) depended on the presence and validity of these values. In general, any mis-
classification would bias towards the null hypothesis, making it more difficult to show a relationship between
initial ventilator settings and worsening gas exchange in the lungs. Future studies should use pulmonary
artery wedge pressure or biomarkers such as BNP in addition to PaO;/FiO3 values and chest x-ray reports
when diagnosing ARDS. Most importantly, a randomized trial is needed to verify the suggestion that high
ventilator pressures play a causal role in the development of ARDS.

5.2 Conclusions

Development of new onset ARDS is a relatively common complication in patients mechanically ventilated
> 48 hours in the ICU. High airway pressures, even more than tidal volumes per se, are the most important
ventilator-associated risk factors for the development of new ARDS. Thus it may be possible to reduce the
occurrence of ventilator-induced lung injuries with careful pressure management. However, randomized
prospective studies are needed to support this hypothesis. Several physiologic risk factors for ALI/ARDS
were identified: these included sepsis, pneumonia, low blood pH, high lactate, and patient obesity. The
results of this study contribute to the understanding of ventilator-associated lung injury and the ever
changing practice of patient care in the ICU.
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5.3 Recommendations for future research

5.3.1 Modifications in the current study

Several modifications of the current study are worth exploring. First, the oxygenation index has been
proposed as a better measure of gas exchange in patients who are mechanically ventilated. Thus, it may
be useful to identify the patients who have good gas exchange at the outset using this index rather than
the PaOy/FiO; ratio. Oxygenation index (OI) is defined as: defined as:

_ PaO; [Mean airway pressure in cmH;0)]

oI PO (5.1)

Second, it is possible to perform a sensitivity analysis on criteria used to characterize the patient cohort.
For example, how would the classified groups change if patients were required to have 24hrs of healthy
gas exchange instead of 12hrs at the outset of mechanical ventilation? How would the results change
if we required the deterioration in gas exchange to last 48 hours instead of 24 hours? The data analysis
depends heavily on the initial grouping of patients, so it is important to understand how the cohort changes

according to inclusion and exclusion criteria.

5.3.2 Related clinical studies

Most groundbreaking studies examine the effects of clinical interventions on patient mortality. Thus, it
would be meaningful to study how day one ventilator settings are related to hospital mortality (i.e. use
mortality rather than development of ARDS as the primary outcome of interest). Our colleagues at BIDMC
also hypothesize that inflammation from injured lungs may spread to the systemic circulation if mechanical
ventilation is applied poorly. Thus it is possible to examine the relationship between day one ventilator

settings and the development of extra-pulmonary organ failure (such as renal failure).

5.3.3 Other studies using the MIMIC-II database

Many clinicians are interested in how ARDS management has changed since the publication of landmark
clinical trials. For example, a large ARDSnet trial showed that low tidal volume ventilation at 6 mL/kg
predicted body weight reduced mortality from 39% to 30% compared to traditional 12 mL/kg in patients
with ARDS [10]. An important task is to determine whether or not tidal volumes have decreased since
the study was published. The MIMIC-II database, which has collected ICU data from 2001 to 2005, is an
excellent source of this information. However, the de-identification and date-shifting of all patient records

may present a potential obstacle to this particular study.
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Appendix A
An Automated Radiology Report Reader

This appendix presents the design and evaluation of the algorithm used to extract information from chest
x-ray (text) reports. As described in Chapter 3, the diagnosis of ALI and ARDS depended on finding
evidence of bilateral infiltrates in these radiology reports. There were 305 patients with deteriorating gas
exchange after the onset of mechanical ventilation, and we needed to examine chest x-ray reports from
12hrs before to 72hrs after the drop in gas exchange for signs of ALI/ARDS. This results in approximately
3.5 reports per patient, which is a total of over 1,000 reports. For this reason, an algorithm was created
to help extract information from the text reports and aid in the diagnostic process. The following sections

describe the structure and design of the algorithm as well as its performance in a large annotated dataset.

Table A.1: Chest x-ray report for patient b62232 on May 20, 2014 at 12:10 am.
Reason: r/o chf [**Signature 1**]

UNDERLYING MEDICAL CONDITION: 62 year old woman with
[**Doctor Last Name 148**]
REASON FOR THIS EXAMINATION: r/o chf [**Signature 1**¥|

FINAL REPORT
INDICATION: Subarachnoid hemorrhage. Rule out CHF.

COMPARISON: 7 hours earlier.

SINGLE VIEW CHEST: A left subclavian line and right subclavian line
are identified. One of the catheters terminates in the mid SVC and the
other in the lower SVC. There is no evidence for pneumothorax. There
is increased opacity of both lungs, greater on the right than on the left.
This may be consistent with pulmonary edema. There is no evidence
for congestive heart failure. No pleural effusions are present.

IMPRESSION: Findings consistent with pulmonary edema.
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A.1 An example chest x-ray report

Table A.1 shows an x-ray report for a patient who developed ARDS after the onset of mechanical ventilation.
Each radiology report contains information such as the time of exam, the purpose of the exam, and clinical
interpretations from the radiologist. On average, x-rays were taken approximately once per day and reports
were recorded at the same rate. Note that this report was divided into multiple sections: underlying
conditions, reason for examination, findings, impression, etc. The clinical interpretation of the x-ray film
was included in sections entitled SINGLE VIEW CHEST, and IMPRESSION.

A.2 Algorithm design

Figure A.1 shows the main components of the text analysis algorithm. These components included (1) a re-
port parser, which reads the report and identifies sections that contain clinical interpretations/diagnoses;
(2) a search engine, which examines the relevant parts of the report for specific phrases (ex. opacities,
infiltrates); and (3) a logical interpreter that uses the results of the search engine to produce desired
outputs (ex. presence or absence of bilateral infiltrates). A key advantage of this algorithm is the ability to
change search phrases and output rules without altering the algorithm itself. The three main components

are further described in the following sections.

Search phrases: opacities, edema

Radiology Negations: no, no evidence Rules
report Locations: left, both lings (If infiltrates & bilateral Then ARDS)

—» report —»

sections results findings

| i |

L/ 4 v
History ... pneumonia, left lung ARDS /PNEUM
impressions... edema, bilateral ATELECTASIS

Figure A.1: A schematic of components in the text-analysis algorithm.
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A.2.1 The report parser

The report parser prepares a report for the search engine in the following manner. First, it removes extra
spaces from the beginning and end of each line. In the original report, these spaces were used as tabs to
align the report, possibly for printing purposes. Second, the parser identifies the beginning of each section
by looking for a colon (:) at the start of a paragraph. The text before the colon is used as the title of
the section, and finding a new colon terminates the previous section. For example, “COMPARISON: 7
hours earlier” would be considered one section with “COMPARISON” as the title. Third, the parser labels
sections that appear after “FINAL REPORT.” This prevents the algorithm from searching in undesired
parts of the report, for example in the sections corresponding to past medical history (i.e. “UNDERLYING
MEDICAL CONDITION”). Table A.2 lists the sections and properties extracted from the example x-ray

report.

Table A.2: Report sections and properties for the example chest x-ray report.
Section title Part of “FINAL REPORT”
Reason no

UNDERLYING MEDICAL CONDITION no

REASON FOR THIS EXAMINATION no

INDICATION yes
COMPARISON yes
SINGLE VIEW CHEST yes
IMPRESSION yes

A.2.2 The search engine

The search engine is the core of the text analysis algorithm. It is responsible for finding specific phrases in
a report, identifying negations and locations associated with the phrase, and returning results to the logic
interpreter. The engine examines all parts of the radiology report that appear after “FINAL REPORT,”
excluding sections that describe previous illnesses (“UNDERLYING ILLNESS”, “HISTORY”, “INDICA-
TION”, “ADMITTING”, etc). For a given search phrase, the engine examines the report in the following

manner:

1. Determine if a section contains a the particular phrase via a normal linear search.

2. If the phrase is present, find the specific sentence that contains the phrase. Examine this sentence for:

e Negations, or words that indicate the item is not present (ex. “there is no evidence of edema”). A
list of negations was obtained from the NegEx algorithm, which was originally designed to extract

diseases from medical discharge summaries [40]. Two different word lists were used to identify
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negations before and after the search phrase; these lists are shown in Tables A.3 (post-phrase

negations) and A.4 (pre-phrase negations).

e Physical location, or location in the human body (ex. infiltrates are present in both lungs and
atelectasis is seen at the left base). A list of terms used to identify physical locations is shown in
Table A.5. The algorithm looked for words that describe physical location in the same sentence as

the search phrase.

e Phrase descriptions, or words that further characterize the disease (ex. there is a diffuse alveolar
pattern in the lungs). A list of search phrases and associated descriptions searched by the algorithm
is shown in Table A.6.

3. Return the search results to the logic interpreter for further processing. The process is then repeated
for other search phrases. In the example report, the algorithm found the following diseases: OPACITY:
both lungs, EFFUSIONS: no, and EDEMA: pulmonary.

Table A.3: Post-phrase negations, modified from NegEx [40]
Negation terms
unlikely
free
was ruled out
is ruled out
are ruled out
have been ruled out
has been ruled out
is not present
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Table A.4: Pre-phrase negations, modified from NegEx [40]
Negation terms
absence of not have did rule the patient out
cannot not know of did rule him out for
cannot see not known to have did rule her out for
checked for not reveal did rule him out against
declined not see did rule her out against
declines not to be did rule the patient out for
denied patient was not did rule the patient out against
denies rather than can rule out
denying resolved can rule out for
evaluate for test for can rule out against
fails to reveal to exclude can rule him out
free of unremarkable for can rule her out
negative for with no can rule the patient out
neither without can rule him out for
never developed without any evidence of can rule her out for
never had without evidence can rule the patient out for
no without indication of can rule him out against
no abnormal without sign of can rule her out against
no cause of rules out can rule the patient out against

no complaints of

no evidence

no new evidence

no other evidence

no evidence to suggest
no findings of

no findings to indicate
no mammographic evidence of
no new

no radiographic evidence of
no sign of

no significant

no signs of

no suggestion of

no suspicious

not

not appear

not appreciate

not associated with
not complain of

not demonstrate

not exhibit

not feel

not had

rules him out

rules her out

rules the patient out
rules out for

rules him out for

rules her out for

rules the patient out for
ruled out

ruled him out

ruled her out

ruled the patient out
ruled out for

ruled him out for

ruled her out for

ruled the patient out for
ruled out against

ruled him out against
ruled her out against

ruled the patient out against

did rule out
did rule out for
did rule out against

did rule him out
did rule her out

adequate to rule out

adequate to rule him out

adequate to rule her out

adequate to rule the patient out
adequate to rule out for

adequate to rule him out for
adequate to rule her out for
adequate to rule the patient out for
adequate to rule the patient out against
sufficient to rule out

sufficient to rule him out

sufficient to rule her out

sufficient to rule the patient out
sufficient to rule out for

sufficient to rule him out for
sufficient to rule her out for
sufficient to rule the patient out for
sufficient to rule out against
sufficient to rule him out against
sufficient to rule her out against
sufficient to rule the patient out against
resolution of
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Table A.5: Terms that describe physical location in the lungs
Location Terms
Both lungs bilateral, bilaterally, bibasilar, bilat, both lungs,
perihilar, multifocal, both lobes, both lung
zones, both apices, both bases, lower lung zones,
upper lung zones

Left lung left, retrocardiac, behind the heart, lingula
Right lung right
Left or right lung asymmetric, hemithorax

Not in lungs abdomen, artery, breast

Table A.6: Phrases and associated descriptions searched by the text analysis algorithm.

Phrases Descriptions

respiratory distress, rds, ards

pneumonia

atelectasis, atelectases, atelectatic

collapse

effusion(s) pleural

fluid pleural

consolidation(s) diffuse, hazy, patchy, opaque
disease diffuse, hazy, patchy, opaque
infiltrate(s) diffuse, hazy, patchy, opaque
density(ies) diffuse, hazy, patchy, opaque
alveolar pattern diffuse, hazy, patchy, opaque
fullness diffuse, hazy, patchy, opaque
haziness, haze diffuse, patchy, opaque
opacity(ies), opacified, opacification(s) diffuse, hazy, patchy

edema pulmonary, pulm, interstitial
lung(s) inflammatory, inflammation, inflammed, clear
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A.2.3 The logical interpreter

The logical interpreter examines the output of the search engine and makes diagnoses based on a list of
rules. An example rule is: if both bilateral and infiltrates are present, mark the patient as having bilateral
infiltrates. The logical interpreter loads the set of rules from an easily manipulated medium, such as a text
file. It then examines the results returned by the search engine to see if any rules are satisfied. If so, the
appropriate diagnoses are recorded. The list of rules used by the interpreter is shown in Tables A.7 and
A.8. In the example report, the patient was identified as having BILAT-INFILTRATES.

Table A.7: Rules used to extract findings from search results
Finding Criteria
infiltrates ARDS, inflammation, inflammatory, inflammed, pneumonia, patchy, infil-
trate(s), density(ies), edema, hazy(iness), opacity(ies), opacification, opacified,
respiratory distress, diffuse, or fullness
atelectasis atelectasis, atelectases, atelectatic, collapse, consolidation, or consolidations
effusion  effusion(s)
clear clear

bilateral bilateral(ly), bibasilar, apices, bases, lower lung zones, or upper lung zones
bilateral both + (lung zones, lobes, lungs, apices, or bases)

bilateral  left + right

bilateral =~ NOT (left or right) + (perihilar, multifocal, interstitial, pulmonary, pulm)

right right
left left, retrocardiac, behind the heart
lungs NOT (abdomen, artery, or breast)

A.3 Algorithm performance

The text analysis algorithm was evaluated by a manual review of chest x-ray reports in 305 patients with
deteriorating gas exchange. A preliminary version of the algorithm was used to detect bilateral infiltrates
and atelectasis/consolidations in these patients. In patients where bilateral disease was found, one report
that contained the diagnosis was selected and examined manually. In all other patients, reports from 12hrs
before the drop in gas exchange to 72hrs after were reviewed. In total, 641 reports were examined for
the presence of infiltrates, atelectasis, pleural effusions, and clear lungs. Distinctions were made between
diseases present in the left, right, or bilateral lungs. If a particular disease was present in both the left and
right lungs, it was considered a bilateral disease. Table A.9 shows the incidence of each disease in this gold

standard of 641 annotated reports.

The output of the text-analysis algorithm was then compared to the gold standard. The sensitivity, positive
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Table A.8: Rules used to extract DIAGNOSES from findings

Diagnosis Finding 1 Finding 2 Finding 3
BILAT-INFILTRATES infiltrates  bilateral lungs
L-INFILTRATES infiltrates  left lungs
R-INFILTRATES infiltrates  right lungs
INFILTRATES infiltrates  NOT (left, right, or bilateral) lungs
BILAT-ATELECTASIS atelectasis  bilateral lungs
L-ATELECTASIS atelectasis  left lungs
R-ATELECTASIS atelectasis  right lungs
ATELECTASIS atelectasis  NOT (left, right, or bilateral) lungs
BILAT-EFFUSION effusion bilateral lungs
L-EFFUSION effusion left lungs
R-EFFUSION effusion right lungs
EFFUSION effusion NOT (left, right, or bilateral) lungs
BILAT-CLEAR clear bilateral lungs
L-CLEAR clear left lungs
R-CLEAR clear right lungs
CLEAR clear NOT (left, right, or bilateral) lungs

Table A.9: Findings from a manual review of 641 reports.
Bilateral lungs Left lung Right lung Not present

Infiltrates 256 89 41 255
Atelectasis 162 168 42 269
Effusions 154 89 58 340
Clear 31 8 17 585
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predictive value (PPV), and accuracy was calculated for each disease. The definitions for sensitivity, PPV,
and accuracy are the follows:

#Ftrue positives

Sensitivity =
y #true positives + #false negatives

F#true positives

Positive predictive value =
p #true positives + #false positives

#ttrue positives + #true negatives
#ttotal records

Accuracy =

In this thesis, a true positive was defined as a correct prediction of a disease or characteristic that was also
associated with the correct part of the lungs. A false positive was a positive prediction that did not result
in a true positive. False negatives and true negatives assume their normal definitions. The performance of
the algorithm in terms of sensitivity, PPV, and accuracy are listed in Table A.10.

Table A.10: Performance of the radiology report analysis algorithm.
Infiltrates Atelectasis Effusions Clear

n (out of 641) 386 372 301 56

Sensitivity 0.98 0.98 0.98 0.96
PPV 0.95 0.92 0.95 0.98
Accuracy 0.96 0.94 0.97 0.996

In general, the algorithm had high sensitivity (> 0.97), high positive predictive value (> 0.92), and high
accuracy (> 0.94) among the different types of diseases/characteristics extracted. The differences between
the gold standard and the algorithm predictions were reviewed, and the following observations were made.
First, the algorithm was in general more accurate than the human reader because it could systematically
identify every instance of the disease. Second, the most common error made by the algorithm was the
inability to differentiate between multiple physical locations in the same sentence. For example, “there are
infiltrates in the left and effusions in the right lung,” was interpreted as bilateral infiltrates and bilateral

effusions. Addressing this issue is non-trivial and may be part of future work that expand on the current
algorithm.

The automated text analysis algorithm runs fairly quickly: it can evaluate reports at 1,000 patients per
minute (where each patient has on the order of 10 reports). At its current speed and accuracy, it may prove
a useful tool for identifying patients from the MIMIC-II database who have specific respiratory diseases.

However, a manual review of the identified patients is still recommended to ensure correct diagnoses.
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A.4 Algorithm code

The “RadiologyReader” package was build using Netbeans IDE 5.5 and Java 1.5. The list of java classes
that make up this package are shown and described in Table A.11.

Table A.11: Source files from the RadiologyReader Package

File Description

Main.java main class to run RadiologyReader
RadiologyParser.java parses a radiology report into sections
RadiologySearchEngine.java main search engine component of the algorithm
RadiologyWriter.java writes the findings/diagnoses to a text file
RadiologyFinding.java class for one particular finding/diagnoses
RadiologyFindings.java class for a set of findings/diagnoses

ReportList.java class for a list of radiology reports
ReportSection.java class for a particular section of the radiology report
Rule.java class for a particular rule used in by logical interpreter
RuleReader.java reads user-written rules from a text file
SearchResult.java class for the result of an algorithm search
SearchResults.java class for a list of results returned by the search
SearchTerm.java class to contain a searched phrase and modifier terms
SingleReport.java class for one radiology report

WordList.java container of a list of words used by the algorithm
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