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Abstract

Time-varying elastance models have been used extensively in the past to simulate the pulsatile nature of cardiovascular

waveforms. Frequently, however, one is interested in dynamics that occur over longer time scales, in which case a detailed simulation

of each cardiac contraction becomes computationally burdensome. In this paper, we apply circuit-averaging techniques to a

periodically driven, closed-loop, three-compartment recirculation model. The resultant cycle-averaged model is linear and time

invariant, and greatly reduces the computational burden. It is also amenable to systematic order reduction methods that lead to

further efficiencies. Despite its simplicity, the averaged model captures the dynamics relevant to the representation of a range of

cardiovascular reflex mechanisms.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past 30 years, computational models of
cardiovascular function have become abundant in both
basic research and teaching, with increasingly sophisti-
cated models becoming available at any biological size
and time scale. At the system level, time-varying
ventricular elastance models have proven to be useful
e front matter r 2004 Elsevier Ltd. All rights reserved.
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representations of the right and left heart (see e.g.,
Sunagawa & Sagawa, 1982). When coupled to appro-
priate models of the peripheral systemic and pulmonary
circulations, such models allow for simulation of
realistic pulsatile, quasi-periodic pressure and flow
waveforms. The dynamics of these models, however,
are quite complex, representing cardiovascular physiol-
ogy at a variety of time scales that include very fast
dynamics (such as cardiac contraction) and slower
dynamics (such as peripheral blood flow). Frequently
one is not interested in an instantaneous value of a
particular variable, or in the details of a specific
waveform, but rather in the response of the variable’s
short-term average to perturbations in its parameters.
This response typically occurs over time scales that are
large compared to the dynamics of cardiac contraction.

In these cases, a cycle-averaged model, which tracks
cycle-to-cycle (i.e. inter-cycle) dynamics rather than

www.elsevier.com/locate/conengprac
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Fig. 1. Pulsatile model. CðtÞ is a time-varying compliance; V in and

Vout are defined here for future reference (see Section 3.2); the voltages

V 0; V 1; V2 represent cardiac, arterial, and venous pressures,

respectively.
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intra-cycle dynamics, seems desirable for several rea-
sons. First, by ignoring the fine intra-cycle structure of
each waveform, one can expect to reduce computational
cost significantly. Second, one can anticipate that
analysis of the dynamics of interest can be simplified if
the model structure is reduced sufficiently. Third, it is
typically the time-averages and not instantaneous values
of key state variables that are regulated through
feedback control. This situation is typical of domains
(from biology to power systems) in which the compo-
nent processes and their interactions are fairly well
mapped out. In such cases, the natural models for
computation and simulation of the global behavior of
the system comprise complex interconnections of models
for the component processes. However, the transients
produced by such complex non-linear models may look
similar to the transients produced by low-order linear
models.

The goal of this paper, which builds on Chang (2002),
is to study a periodically driven, closed-loop, lumped-
parameter recirculation model and to derive a cycle-
averaged version of it by applying circuit-averaging
techniques from the power electronics literature (Vergh-
ese, 1996). The process of cycle-averaging preserves the
state–space description of the model. Furthermore, the
resulting model structure turns out to be linear and
time-invariant (LTI), which allows for further insight
into and simplification of the model structure.

While the following discussion is inevitably framed
from the perspective of physiological systems, we have
tried to keep the domain-specific terminology to a
minimum in order to make this work accessible to the
broader engineering audience.
Fig. 2. Time-varying compliance waveform.
2. Pulsatile model

We implemented a simplified version of a previously
published lumped-parameter, closed-loop pulsatile mod-
el (Heldt, Shim, Kamm, & Mark, 2002). While the
simplified model only represents the left ventricle and
the systemic circulation, it is still rich enough to capture
the essential time-varying dynamics of the pulsatile
model and to serve as a sufficient testbed for our
development of an averaging methodology.

As shown in Fig. 1, the model is in circuit form, and
consists of three segments, representing cardiac (or
pumping), arterial (or high pressure), and venous (or
low pressure) compartments, respectively. The pumping
action of the heart is represented by a single ventricular
time-varying compliance, CðtÞ [the inverse of a time-
varying elastance, EðtÞ; i.e. CðtÞ ¼ 1=EðtÞ], which cycles
with period T between a diastolic (or filling) value CD of
duration TD; and a systolic (or ejection) value CS of
duration TS; as shown in Fig. 2. We assume the duty
ratio TS=TD to be 1

2
for convenience, although other
ratios are trivially accommodated. Voltages in this
circuit analog represent pressures, and currents repre-
sent flows.

The arterial and venous compartments are character-
ized by constant resistances and compliances. The
system is thus described by a set of three coupled
time-invariant linear differential equations:

d

dt
½CðtÞV0ðtÞ� ¼ ½i2ðtÞ � i0ðtÞ�;

d

dt
V 1ðtÞ ¼

1

C1
½i0ðtÞ � i1ðtÞ�;

d

dt
V 2ðtÞ ¼

1

C2
½i1ðtÞ � i2ðtÞ�: (1)

The currents can be expressed using the constitutive
relations for the resistors:

i0ðtÞ ¼
1

R0
½V 0ðtÞ � V1ðtÞ�;
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Fig. 3. Voltage waveforms generated using the pulsatile model. V es
1

and V init are defined here for future reference.

Table 1

Parameter assignments and initial conditions for the pulsatile model

Compartment

0 1 2

R ðOÞ 0.01 1.0 0.03

C (F) 0.4–10.0 2.0 100.0

V initial (V) 7.0 56.0 9.0
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Fig. 4. Transient response of pulsatile waveforms to a step change in

the resistance R1 from 1.0 to 5:0O at time t ¼ 5 s:
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i1ðtÞ ¼
1

R1
½V1ðtÞ � V2ðtÞ�;

i2ðtÞ ¼
1

R2
½V2ðtÞ � V0ðtÞ�: (2)

Table 1 shows the parameter assignments and initial
conditions for the pulsatile model (Davis & Mark,
1990).

Fig. 3 shows the voltage waveforms generated with
the pulsatile model described above.

It should be pointed out that the spikes in the voltage
V 0 are non-physiologic and not seen if a more realistic
time-varying compliance waveform is used (see Appen-
dix A, which also points to recent analytical solutions of
the pulsatile model). Fig. 4 shows the transient response
of the voltage waveforms to a step in the resistance R1 at
time t ¼ 5 s and demonstrates that changes in the cycle-
to-cycle dynamics occur over time scales that are large
compared to the time scale of intra-cycle dynamics.
3. Developing a cycle-averaged model

In developing a cycle-averaged version of the simpli-
fied cardiovascular model, we make use of the definition
of the symmetric running (or local) time-average of a
waveform V ðtÞ over a period T:

/V ðtÞS ¼
1

T

Z tþT=2

t�T=2

V ðtÞdt: (3)

If V ðtÞ is periodic with period T, then /V ðtÞS will
evidently be constant, but departures from this periodi-
city result in time-varying /V ðtÞS:

An important consequence of Eq. (3) is that the
derivative of the time-averaged waveform equals the
time-average of its derivative, i.e.

/
d

dt
V ðtÞS ¼

d

dt
/V ðtÞS: (4)

When averaging constraint equations for terminal
voltages, currents, and charges of linear and time-
invariant components of the circuit, one can easily verify
that the time-averaged voltages, currents, and charges
obey the same constraints as their instantaneous
counterparts. Our attention in finding a cycle-averaged
description of the pulsatile model therefore focuses on
finding a cycle-averaged description of the elements that
give rise to the nonlinear and time-varying nature of
the circuit, namely the diodes and the time-varying
elastance.
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3.1. Replacing the time-varying elastance

The cycle-averaged voltage across the central capa-
citor is given by

/V0ðtÞS ¼ /EðtÞQðtÞS; (5)

where QðtÞ is the instantaneous charge on this capacitor.
If QðtÞ were of low ripple,1 one could approximate the
average of the product on the right-hand side by the
product of the averages. In the pulsatile model described
above, however, QðtÞ has a relative peak-to-peak ripple
of approximately 100%, which is certainly not low
ripple. We therefore expand both EðtÞ and QðtÞ in
Fourier series to first order:

EðtÞ � E0 þ E1 cos
2pt

T

� �
þ E2 sin

2pt

T

� �
;

QðtÞ � Q0 þ Q1 cos
2pt

T

� �
þ Q2 sin

2pt

T

� �
: (6)

The right-hand side of Eq. (5) can now be approximated
by

/EðtÞQðtÞS � E0Q0 þ
1
2
ðE1Q1 þ E2Q2Þ; (7)

where E0 and Q0 are equivalent to /EðtÞS and /QðtÞS;
respectively. Since, for now, EðtÞ is strictly periodic, E0;
E1; and E2 are constant. Furthermore, Q1 and Q2 can be
assumed constant over the cycle period T. The second
term on the right-hand side of Eq. (7) therefore
represents an offset voltage, Voffset; that is approxi-
mately constant over the averaging interval. Eq. (5)
therefore equates to

/V0ðtÞS � /EðtÞS/QðtÞSþ Voffset: (8)

The time-averaged rate of change of the charge on the
central capacitor, i.e. the current flowing into or out of
the capacitor, can now be evaluated using Eq. (8):

/iðtÞS ¼
d

dt
/QðtÞS �

d

dt

/V 0ðtÞS� Voffset

/EðtÞS

� �

¼
1

/EðtÞS
d

dt
/V0ðtÞS: ð9Þ

The final equality in Eq. (9) follows from the constancy
of /EðtÞS and Voffset; respectively. Using the definitions
in Fig. 2, /EðtÞS is given by

/EðtÞS ¼
TS

TCS
þ

TD

TCD
: (10)

The time-varying elastance introduced in Section 2 can
therefore be replaced by a constant capacitor with
effective capacitance Ceff ¼ 1=/EðtÞS and constant
offset voltage Voffset as indicated in Fig. 5.
1The relative peak-to-peak ripple of a waveform V is Vpp ¼

ðVmax � VminÞ=/VS:
3.2. Replacing the diodes D1 and D2

To deal with the diodes D1 and D2; we introduce a
switching function qðtÞ that is 1 when the diode D1 is
conducting and 0 when D1 is non-conducting. The
square-wave nature of the time-varying compliance
waveform allows for two simplifications: (1) qðtÞ ¼ 1
throughout TD and qðtÞ ¼ 0 throughout TS; and (2) a
switching function for D2 is given by ½1 � qðtÞ�; i.e. D2 is
conducting when D1 is not and vice-versa. To study the
currents through the diodes, it will be convenient to
introduce the following voltages (also see Fig. 1):

VoutðtÞ ¼ ½1 � qðtÞ�V 0ðtÞ þ qðtÞV 1ðtÞ;

V inðtÞ ¼ ½1 � qðtÞ�V 2ðtÞ þ qðtÞV 0ðtÞ: (11)

The time averages of the currents i0 and i2 can now be
represented using the switching function qðtÞ:

/i0ðtÞS ¼
1

R0
ð/VoutðtÞS�/V1ðtÞSÞ

¼
1

R0
ð/V0ðtÞS�/qðtÞV 0ðtÞSÞ

þ
1

R0
ð/qðtÞV 1ðtÞS�/V 1ðtÞSÞ; ð12Þ

/i2ðtÞS ¼
1

R2
ð/V2ðtÞS�/V inðtÞSÞ

¼
1

R2
ð/qðtÞV2ðtÞS�/qðtÞV 0ðtÞSÞ: ð13Þ

The remainder of this sub-section will be devoted to
finding appropriate approximations to the terms in Eqs.
(12) and (13) that are averages of a product of the
switching function with one of the voltage waveforms.
We seek approximations invoking combinations of
averaged waveforms to replace the averages of combi-
nations of waveforms.

Diastolic venous waveform: /qðtÞV2ðtÞS represents the
cycle-averaged diastolic venous waveform. Owing to the
large value of C2; V2 is approximately constant around
the value /V2ðtÞS; as can be seen from Fig. 3. It is
therefore appropriate to approximate the diastolic
venous waveform by

/qðtÞV 2ðtÞS � /qðtÞS/V2ðtÞS ¼
TD

T
/V2ðtÞS: (14)
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Diastolic cardiac waveform: qðtÞV 0ðtÞ represents the
cardiac waveform during diastole, Vd

0ðtÞ: Its time course
can be expressed as follows:

Vd
0ðtÞ ¼ Vbd

0 þ ðV 2ðtÞ � Vbd
0 Þð1 � e�t=CDR2 Þ: (15)

By invoking continuity of charge, the cardiac voltage at
the beginning of diastole, Vbd

0 ; can be expressed in terms
of the arterial end-systolic voltage, V es

1 ; according to

Vbd
0 ¼

CS

CD
V es

1 : (16)

Inserting Eq. (16) into Eq. (15) and applying the cycle-
averaging operation results in a cycle-averaged expres-
sion for the diastolic cardiac waveform

/qðtÞV0ðtÞS ¼
R2

T
ðCD/V 2ðtÞS� CSV es

1 Þðe
�TD=CDR2 � 1Þ:

(17)

Eq. (17) necessitates finding an expression for V es
1 in

terms of the other cycle-averaged voltages.
End-systolic arterial voltage: To find an expression for

the end-systolic arterial voltage, V es
1 ; we make a

straightline approximation of the arterial voltage wave-
form V 1ðtÞ with a slope of �V init=R1C1; as suggested by
Fig. 3. Under this assumption, it can be easily verified
that V es

1 is given by

V es
1 ¼ /V1ðtÞS

2R1C1 � 2TS

2R1C1 � T
: (18)

Diastolic arterial voltage: The diastolic portion of the
arterial waveform can be approximated by

Vd
1ðtÞ ¼ ðV es

1 � V2ðtÞÞ e�t=R1C1 þ V 2ðtÞ; (19)

so that the cycle-averaged diastolic arterial waveform is
given by

/qðtÞV1ðtÞS ¼
TD

T
/V 2ðtÞSþ

R1C1

T
ðV es

1 �/V2ðtÞSÞ

	ð1 � eTD=R1C1 Þ ð20Þ

into which the right-hand side of Eq. (18) can be
substituted.

3.3. Model structure and initial conditions

When combining the results of the last four sub-
sections with Eqs. (1,9,12,13), it emerges that the
resultant cycle-averaged model can be represented by
the LTI circuit model in Fig. 6, where the diodes have
been replaced by voltage and current sources that
depend on the cycle-averaged voltages /V0ðtÞS;
/V1ðtÞS; and /V2ðtÞS: Equivalently, the model is
described by a state–space model of the form

d

dt

/V0ðtÞS

/V1ðtÞS

/V2ðtÞS

2
64

3
75 ¼ A

2
64

3
75

/V0ðtÞS

/V1ðtÞS

/V2ðtÞS

2
64

3
75: (21)
An eigenvalue decomposition of A reveals the following
eigenvalues ½l1; l2; l3� ¼ ½�109:02;�0:68; 0:0�: The ne-
gative reciprocals of the three eigenvalues of A are the
time constants of the exponentials that govern the
response of the model to initial conditions. The
eigenvalue l1 is irrelevant to our simulations as it
corresponds to a time constant much smaller than our
averaging interval T. The second eigenvalue corresponds
to a time constant of approximately 1.49 s. The final
eigenvalue, l3 ¼ 0; with its corresponding eigenvector
E3 ¼ ½E31;E32;E33�

0; indicates that a non-zero steady-
state solution exists. In fact, after initial transients due
to l1 and l2 have subsided, the system will settle in a
new steady-state S proportional to E3

S ¼ gE3; (22)

where g is determined by the total charge in the system,
according to the constraint

Qtotal ¼ ½Ceff ;C1;C2�

gE31 � Voffset

gE32

gE33

2
64

3
75: (23)

We can determine g by requiring that the total charge in
the cycle-averaged model equal the total charge in the
pulsatile model. The state S then becomes a natural
choice for the initial conditions of the cycle-averaged
model. Using the waveforms generated by the pulsatile
model, the offset pressure can be computed to Voffset ¼

�14:5078: The total charge of the pulsatile model is
1082C, which leads to g ¼ 70:69: Thus the initial
condition for the cycle-averaged model is given by S0 ¼

½27:8382; 64:3432; 9:0626�:
4. Comparison of simulations

To evaluate the performance of the cycle-averaged
model we will compare its simulation results and
simulation time to that of the pulsatile model.
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Table 2

Comparison of steady-state simulation results for the pulsatile model

(PM) and the cycle-averaged model (CAM)

Variable PM CAM Rel. Error (%)

V0 (V) 29.23 27.85 �4.7

V1 (V) 64.07 64.36 0.5

V2 (V) 9.01 9.06 0.6

i0 (A) 55.06 55.30 0.4

i1 (A) 55.06 55.30 0.4

i2 (A) 55.09 55.30 0.4

q0 (C) 53.03 47.06 �11.26

q1 (C) 128.14 128.72 0.5

q2 (C) 900.83 906.22 0.6

Values shown under PM are cycle-averages of the pulsatile waveforms.
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4.1. Comparison of steady-state numerics

In Table 2, the steady-state responses of the cycle-
averaged model (CAM) and cycle-averages in the
pulsatile model (PM) are compared. All but two of the
steady-state values show a negligible discrepancy be-
tween the cycle-averaged and the pulsatile model. The
remaining two variables are not independent, and an
improvement in V0 will certainly led to an improvement
in q0: One could tune the offset voltage Voffset in the
cycle-averaged model to reduce the discrepancy of V0

between the cycle-averaged and the pulsatile model.

4.2. Comparison of dynamic responses

To compare the responses of the two models to
changes in their parameters, we chose to perturb (1) the
resistance R1; and (2) the cycle period T. Both
parameters play important roles in cardiovascular
homeostasis through feedback regulation, and both
have the capacity to change by a factor of 2 over short
periods of time. Fig. 7 shows the beat-by-beat cycle-
averaged response of the pulsatile model (solid line) and
the response of the cycle-averaged model (dashed line)
to a change in R1: At time t ¼ 15 s; the resistance is
ramped from R1 ¼ 1:0 to 2:0O over a period of 2 s. At
time t ¼ 45 s; this process is reversed.

Fig. 8 shows the transient dynamics of both models
when the cycle period is changed in a step from T ¼

1:020:5 s: The step is again reversed at t ¼ 45 s: Both
transient simulations show that the time constants of the
system-level response are preserved well by the cycle-
averaged model. The main discrepancy between the
simulation outputs of the two models is the static offset
in the steady-state value of V 0:

4.3. Computational efficiency

Both the pulsatile and the cycle-averaged models were
implemented in the C programming language using a
Linux operating system on a PC (AMD Athlon XP
2000+, 1.67 GHz processor). A standard fourth-order
Runge–Kutta integrator was used to solve the differ-
ential equations numerically. In order to compare
computational efficiencies between the various models,
we make use of the fact that total charge is a conserved
quantity in both implementations. The step-sizes were
chosen in such a way that a pre-defined, relative
numerical error in total charge was not exceeded
throughout the numerical integrations. In Table 3, we
present the steady-state voltages of the pulsatile model
and of the cycle-averaged model for three different step
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Table 3

Computational efficiency vs. simulation accuracy

Variable PM CAM

Step size (s) 10�6 10�4 10�3 10�2

V0 (V) 29.23 27.85 27.85 27.85

V1 (V) 64.07 64.36 64.36 64.36

V2 (V) 9.01 9.06 9.06 9.06

CPU time (s) 10083:9 � 88:2 121:3 � 0:5 12:3 � 0:2 1:2 � 0:1

<V2>

<i2>

<i1>

<V0>

<i0>

<V1>

VS VV VA
~ ~

Fig. 9. Circuit representation of the reduced order model. VV; ~VS; and
~VA are controlled voltage sources that depend on the cycle-averaged

voltages /V1ðtÞS and /V 2ðtÞS:

Table 4

Comparison of pulsatile, cycle-averaged, and reduced-order model

Variable PM CAM ROM

Step size (s) 10�6 10�2 10�1

V 0 (V) 29.23 27.85 27.85

V 1 (V) 64.07 64.36 64.36

V 2 (V) 9.01 9.06 9.06

CPU time (s) 10083:9 � 88:2 1:21 � 0:04 0:11 � 0:01

CPU times show mean � standard deviation.
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sizes. The source codes were compiled using the -pg
option of the gcc compiler. Each program was run for
10,000 s of simulated time and Linux’s Gprof utility was
used to assess the CPU time. In each run, the simulation
shown in Fig. 7 is repeated with a period of 100 s. The
final steady-state values at the conclusion of the
simulations are reported in Table 3; the CPU times
given in the table are averages of five separate runs for
each program.

As can be seen from this table, the CPU time for the
cycle-averaged model can be improved by a factor of
8000 over the pulsatile model without serious degrada-
tion of accuracy.

The estimate of computational cost of the pulsatile
model might be somewhat exaggerated due to the choice
of ventricular pressure as a state variable. Choosing
ventricular volume instead might allow for bigger time
steps to be taken, while conserving simulation accuracy,
such that the pulsatile model does not perform so
unfavorably. Nevertheless, the averaged model clearly
permits substantial efficiencies over the pulsatile model.
5. Model reduction

As noted in Section 3.3, the cycle-averaged model has
one very fast time constant t1 ¼ �1=l1 � 0:009 s: As
mentioned before, this time constant is much smaller
than our averaging interval and is therefore irrelevant to
the cycle-averaged model. Using ideas from singular
perturbation theory (see, e.g., Caliskan, Verghese, &
Stanković, 1999), we can accordingly partition the cycle-
averaged state-space model as follows:

_xf

_xs

" #
¼

A1 A2

A3 A4

" #
xf

xs

" #
; (24)

where xf and xs correspond to rapidly and slowly
varying signals, respectively. In our case, the structure of
the matrix A in Eq. (21), suggests that xf corresponds to
/V 0S and xs to ½/V 1S;/V 2S�: Since xf is a signal with
a very fast transient, _xf will be approximately zero after
a short-time interval. Consequently, xs can be written as
follows in terms of xf following the fast transient
interval:

xf � �A�1
1 A2xs: (25)

Substituting this in the expression for _xs yields a
reduced-order cycle-averaged model, still in state-space
form

_xs � ðA4 � A3A�1
1 A2Þxs: (26)

The circuit representation of the reduced order model
(ROM) is shown in Fig. 9.

In Table 4, we compare the steady-state capacitor
voltages and CPU times for the largest possible time
steps that the pulsatile, the cycle-averaged, and the
reduced-order models permit. The CPU times are again
based on 10,000 s simulations, and represent the
averages of five separate runs of each program.

In Fig. 10, we compare the dynamic response of the
three models to a ramp in the resistance R1 from 1.0 to
2:0O at t ¼ 15 s:

Note that the reduced-order CAM runs 10 times
faster than the CAM. The only noticeable difference in
the dynamic responses is seen in the arterial voltage V1

after the new steady state is attained. The relative error
in V 1 between the ROM and the PM responses is only
2.3%, however, and therefore well within the tolerable
range for the approximations made.
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6. Conclusions

In this paper, we have applied circuit-averaging
techniques to a simplified lumped-parameter model of
the cardiovascular system. We have shown that the
resultant model structure is linear and time invariant,
which allows for further insight into the model structure
as demonstrated by our analysis of eigenvalues and
eigenvectors. The realization of a fast time-constant also
leads to the development of a reduced-order model using
singular perturbation techniques. The cycle-averaged
models allow for more generous time steps, which
reduces the CPU time by a factor of 8000 for the full
CAM and 80,000 for the reduced CAM, while still
preserving accuracy of the simulation output. It has to
be pointed out, however, that the small time step
required by the PM is due to a somewhat conservative
restriction placed on the relative error of total charge;
relaxing this restriction or choosing volume instead of
pressure as state variable will allow somewhat bigger
time steps.

It is our main conclusion that cycle-averaging is a
powerful technique to single out cardiovascular dy-
namics that occur on the time scale of a few cycles.
Improvements in computational efficiency and insight
into the model structure are gained by focusing on those
components of the model that give rise to the dynamics
of interest. Future work will include an improvement in
the representation of V 0ðtÞ; choice of ventricular volume
as a state variable, more realistic compliance variation,
extension to multi-chamber heart models, and addition
of cardiovascular reflex mechanisms to allow for
homeostatic control.
Appendix

Assuming a piecewise linear time-varying elastance
waveform (see Fig. A1), Chen (Chen, 2003a; Chen,
Heldt, Verghese, & Mark, 2003b) obtained more
realistic voltage waveforms as shown in Fig. A2. In
fact, by making reasonable approximations, analytical
solutions (top panel of Fig. A2) can be obtained that
compare very favorably to the numerical ones (bottom
panel of Fig. A2), both in terms of the steady-state
numerics and the transient response to perturbations of
parameters. In Fig. A2, for example, the cycle-period T
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is halved at time t ¼ 30 s: While in principle cycle-
averaging can be applied to the piecewise linear
elastance model of Fig. A1, increased computational
efficiency was achieved in this case by sampled-data
methods rather than local averaging. We are currently
exploring averaging for this elastance model.
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