
Predicting Heart Beats using Co-occurring Constrained Sequential Patterns 

Shameek Ghosh1, Mengling Feng2,3, Hung Nguyen1, Jinyan Li1 

1University of Technology Sydney Australia 
2Massachussets Institute of Technology, Cambridge, USA  

3Institute for Infocomm Research, Singapore 

Abstract 

The aim of this study is to develop and evaluate a 
robust method for heart beat detection using a sequential 
pattern mining framework, based on the multi-modal 
Physionet 2014 challenge dataset. Each multi-modal 
patient time series was initially transformed to a symbolic 
sequence using Symbolic Aggregation Approximation 
(SAX). A training set was created, by randomly selecting 
70% of the data and the rest 30% was used as the test set. 
Later, all segments of length 100 were extracted, for 
annotated beat occurrences. Subsequently, an algorithm 
was used to extract repetitive frequent subsequences, 
where consecutive symbols are separated by a pre-
defined gap range. The patterns for ECG and BP were 
then ranked based on length and frequency support. For 
tests, the highest ranked patterns were used to mark beat 
segments. True beat occurrences were only considered 
when patterns co-occurred for both ECG and BP within a 
width of 150 time points. Our results comprise two parts 
viz. extracted top ranked sequences and gross test 
statistics. An interpretive highest ranked sequential 
pattern for ECG looks like 
[7,7,7,5,5,5,5,5,4,3,10,10,10,2,2,3,3,4,3,4,5,5,5,6,7], 
for 10 discrete symbols which identify regional signal 
activity, with a gap range of [2,4] between contiguous 
elements. As per our test results, the method gives us a 
sensitivity of 51.66% and a positive predictivity (PPV) of 
67.15%. The novelty of mining gap constrained co-
occurring frequent sequential patterns lies in its ability to 
capture approximate co-occurring long clinical episodes 
across multiple variables, even if the quality of one signal 
suffers for a certain period of time. A higher PPV 
indicates that our method did not have a lot of false 
positives (detecting non-beats). The method is still being 
improved and will be further tested in the next stages of 
the Physionet Challenge 2014. 

1. Introduction

Heart beat patterns in an ECG have traditionally been 

identified using the popular P-QRS-T waveform cycle. In 
this context, early detection of heartbeats is an important 
problem, owing to its applicability in the identification of 
irregular heartbeats or while differentiating normal from 
abnormal beats. Yet, a QRS cycle just by itself is not 
enough to always detect a beat signature, if the ECG 
signal is noisy and scrambled. Towards this aspect, the 
14th Physionet/Computing in Cardiology 2014 challenge 
was instituted to detect heartbeats based on a multi-modal 
dataset, for a set of patients. The objective of the 
challenge was aimed at the exploration of robust 
techniques for detecting heartbeats from multi-modal 
data. Each clinical record consisted of 10 minute excerpts 
of four to eight signals, which among others included data 
from ECG, blood pressure (BP) and EEG. Moreover, the 
records in the multi-modal training dataset were also 
annotated for occurrences of heart beats based on expert 
opinion. 

In recent literature, numerous studies have been 
reported on the detection of heartbeats using ECG 
features like morphological signatures, frequency and 
interval features, neural networks and support vector 
machines [1-3]. Moreover, there have been some studies 
related to the mining of sequential time series motifs in 
ECG signals, which were predictive of cardiovascular 
diseases [5-6, 12]. Although a number of methods have 
been proposed using statistical features, we intended to 
explore the heart beat detection problem using a 
sequential pattern mining framework. In this context, the 
proposed methodology consisted of a number of stages 
involving pre-processing of data, mining of sequential 
patterns and the employment of these patterns for the 
final prediction of heart beat segments. In the following 
sections, we describe our methodology for mining 
sequential patterns, and our test statistic results based on a 
test sets, created from the existing training set.      

2. Methodology

The sequential pattern mining methodology consists of 
mainly three stages. In the first stage, continuous time 
series signals are transformed into a symbolic 
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representation. In the second stage, the collection of 
known heart beat segments is used for mining frequently 
occurring sub-sequences. In the third stage, the set of all 
patterns are ranked to obtain relevant sequential patterns 
based on increased symbol activity in a given pattern.    

 
2.1.  Data preprocessing  

For the purposes of finding frequent sub-sequences, 
the ECG and BP time series records for each patient were 
initially pre-processed based on a symbolic discretization 
method known as symbolic aggregate approximation 
(SAX) [4]. SAX performs symbolization of continuous 
time series by transforming the data into a piecewise 
aggregate representation and later converting the same 
into a symbolic string. As a result, numerous data mining 
algorithms which operate on discrete representations can 
be applied to SAX based symbolic sequences to extract 
interesting sequential patterns. A SAX representation 
would thus be a transformed sequence of symbols as 
shown in Figure 1. X and Y are cut-points separating 
regions which are denoted by P, Q and R. The given 
signal is thus represented as QQRQPQR. 

 

 
 

Figure 1. SAX approximation of a continuous time series 
signal  
 

Following the construction of symbolic sequences for 
each patient record in the training dataset, reference heart 
beat annotations are used to extract symbolic segments of 
a given length, say k. This process is carried out by 
selecting each reference heart beat annotation and 
extracting the corresponding segment at the concerned 
position, such that the given annotation is in the middle of 
the extracted segment. This is repeated for both the ECG 
and the BP symbolic representations for all the patient 
records. Subsequently, the extracted segments are 
collected together to build a new set. Finally, we obtain a 
set of known heart- beat specific symbolic segments for 
both ECG and BP, respectively.  

 
2.2. Mining gap constrained sequential 
patterns 

In the past, there have been a several studies detailing 

various methods of generating frequent sequential 
patterns from a set of sequences [8, 10, 11]. In this 
context, sequential pattern mining aims to extract a set of 
significant sub-sequences based on the concept of 
frequency support in different types of data such as time 
series, transactions and sequences. Relevant definitions 
are provided next.  

For a set of symbols (also known as an alphabet) given 
as I = {i1,i2,...in}, a sequence is an ordered list of itemsets 
like s={s1,s2,....,sn} where si belongs to I. A sequence Sa = 
(a1,a2,...,an) is said to be a sub-sequence of Sb = 
(b1,b2,...bm) if there exists integers 1≤ i1≤ i2 ≤ ... ≤ in ≤m, 
such that a1  bi1, a2  bi2,...,an  bin. Thus for a given a 
set of symbols as P= {a, b, c}, ab is a subsequence of 
acbc, but not ba. Now, let us consider D = {d1, d2,...., dn} 
to be a set of sequences in a database. Given D, if there 
exists a subsequence P, such that P is found in ‘k’ number 
of entries in D, then ‘k’ is defined as the frequency 
support of P. Moreover, it is not necessary for all symbols 
in P to occur consecutively. Instead a maximum gap 
constraint denoted as 'g', allows the algorithm to search 
for a sequence, such that consecutive elements in P can be 
distant from each other in the matched sequence entry, up 
to a maximum value of g. Thus for example, if g=2, then 
'ab' is a subsequence of 'acb' but not 'acccb'. 

For the purpose of mining frequent gap-constrained 
sub-sequences, we employed the ConSGapMiner 
algorithm, which can be used to extract sub-sequences 
with user-defined gap constraints [8]. It involves growing 
a set of candidate sub-sequences in the form of a prefix-
based lexicographic sequence tree [8], while recording the 
frequency support of each candidate sequence. Moreover, 
the generation of a candidate subsequence is based on an 
important condition. If there exists a candidate sequence 
which does not satisfy the minimum user-defined 
frequency support threshold condition, then the concerned 
sequence need not be extended. This is because the 
descendants of the concerned sequence (symbolic 
extension of the sequence when considered as a prefix) 
are also expected to be infrequent [8]. In addition, the gap 
constraint in a sequence is verified by the bitmap 
checking procedure [7]. Further, details on satisfying gap-
constraint based on bitmaps can be found in [7]. 

 
2.3. Ranking patterns 

Pattern mining algorithms typically generate a 
significant number of patterns as part of reporting the list 
of patterns which satisfy gap constraints and frequency 
support. In this context, there have been numerous 
interestingness measures, which have been used for 
ranking of patterns [9]. To minimize the number and 
identify a suitable set of patterns, we used the following 
measure to rank the patterns.  
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The rationale behind using the given measure was to 

identify patterns with more number of symbols indicating 
increased activity. In addition, before applying  to rank 
the list of patterns, we initially extracted patterns with a 
length of at least 10 as part of the sequential pattern 
mining algorithm.  

 
An illustration of the different stages along with the 

pattern mining framework is given in Figure 3. 
  

 
 
Figure 2. Stages of extracting sequential gap-constrained 
patterns briefly explained in section 2. 
 

3. Results and discussion 

The above described methodology was utilized to 
extract sets of frequent gap-constrained sequential 
patterns, for both the ECG and BP symbolic segments. 
Towards this purpose, we employed 70% of the Physionet 

2014 Challenge dataset for training and 30% as the 
testing set. A sliding window of length 100 was used to 
shift through the entire length of a test record, while 
marking potential beats (for both ECG and BP sequences 
in a test record).Thus, if a BP or ECG pattern was found 
in the test segment, then the segment mid-point would be 
marked as 1 at the corresponding position in the original 
record for ECG or BP. Next, the window would move 
forward by a value of 30. The difference of 30 was 
considered based on the maximum possible length of a 
sequential pattern. The ECG and BP pattern matching 
step would be repeated for the sliding window segments. 
Finally, after both BP and ECG records were marked, a 
true beat was considered only when both ECG and BP 
sequences were marked as '1' within a maximum 
difference of 150 time points. Table 1 shows the 
parameters used for extracting sequential patterns from 
the training set.  

 
Table 1. Algorithmic Parameters for Sequential Patterns 
 

Parameters  Value 
Extracted Beat Segment 
Length 

100 

Number of SAX 
Symbols 

10 

Gap Range [2,4] 
 
Table 2 provides the interpretations provided to the 

definitions of TP, FN and FP in the given challenge. The 
measures employed as per the challenge were sensitivity 
(Se) and positive predictivity (+P). These are defined as 
below. 

Se = 100 · TP / (TP + FN) 
+P = 100 · TP / (TP + FP) 

 
Table 2. Definitions of TP, FN and FP 

 
Term  Meaning 
TP Number of correctly 

detected beats 
FN Beats missed 
FP Detection of non-beats 

 
 In Table 3, we report the gross and average test 

statistics as required by the challenge, for our test dataset. 
 
 

Table 3. Test Results 
Test Statistics  
Average Sensitivity 51.66% 
Gross Sensitivity 65.3% 
Average positive predictivity 67.15% 
Gross positive predictivity 72.1% 
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Although the set of generated patterns was extremely 
large, some of the top ranked patterns were significant to 
be ECG and BP signatures, which were used to annotate 
heart beats. The highest ranked ECG and BP sequential 
patterns are listed in Table 4. In this context, earlier 
studies have emphasized the importance of longer 
subsequences in building better models [12]. ECG and BP 
sequential patterns can thus help interpret detect of 
instances of transitions that are positively associated with 
various clinical events.   

 
Table 4. Sequential Pattern examples for ECG and BP  

Physiologic 
Variables 

Sequential Pattern 

ECG 
Pattern 

[7,7,7,5,5,5,5,5,4,3,10,10, 
10,2,2,3,3,4,3,4,5,5,5,6,7] 

  
BP Pattern [6,5,4,4,3,3,3,3,2,2,3,4,5,6,7,8] 

 
Figure 3 provides a visual interpretation of the ECG 

pattern, indicating the interpretive capability of a 
sequence of clinical events. In this context, visual 
depictions of sequential patterns could be extremely 
useful to a clinician, for identifying differences in the 
types of heart beats.   

   
Figure 3. Example of a Top-Ranked Long Range ECG 
Sequential Pattern  

 
4. Conclusion 

In this study, we presented the application of a gap-
constrained sequential pattern mining methodology to 
obtain frequent sub-sequences for annotating heart beat 
segments, using both ECG and BP. Towards this aspect, 
we employed the SAX discretization technique to 
discretize the continuous ECG and BP series into a 
symbolic form. Later, sequential patterns with an 
increased density of symbols were considered as more 
relevant and ranked for predicting heart-beats. As future 
work, more physiological variables may be used in a 
clinical record, for applying the sequential pattern mining 
framework, apart from ECG and BP. Moreover, finding 
relevant patterns from a given list, turns out to be an 
important problem in a clinical context and more suitable 
interestingness measures could be applied. 
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