
  

  

Abstract — Prognostication of coma outcomes following 
cardiac arrest is both qualitative and poorly understood 
in current practice. Existing quantitative metrics are 
powerful, but lack rigorous approaches to classification. 
This is due, in part, to a lack of available data on the 
population of interest. In this paper we describe a novel 
retrospective data set of 167 cardiac arrest patients 
(spanning three institutions) who received 
electroencephalography (EEG) monitoring.  We utilized 
a subset of the collected data to generate features that 
measured the connectivity, complexity and category of 
EEG activity. A subset of these features was included in a 
logistic regression model to estimate a dichotomized 
cerebral performance category score at discharge. We 
compared the predictive performance of our method 
against an established EEG-based alternative, the 
Cerebral Recovery Index (CRI) [1] and show that our 
approach more reliably classifies patient outcomes, with 
an average increase in AUC of 0.27. 

 

I. INTRODUCTION 

Every year there are approximately 800,000 sudden cardiac 
arrests in the United States and Europe with survival rates of 
approximately 10% [2,3]. Of those that survive, 80% enter a 
comatose state after resuscitation and only 3–7% regain 
normal neurological status [2,4]. The ability to accurately 
assess the extent of anoxic damage, and neurological 
outcome is of immense concern to families, hospitals and 
care providers alike. In addition to the obvious emotional 
cost of care for families, the financial burden can be steep, 
running up to $20,000 a day, with stays lasting from hours to 
weeks. 

Despite the existence of several animal-based models in 
the literature [4-7], a neurological examination by a 
physician remains the method of choice for gauging 
neurological outcomes. These qualitative evaluations can be 
problematic, however, as they require doctors to grapple 
with a complex interacting array of confounding factors 
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including anesthesia, cooling protocols and patient age, all 
of which influence the characteristics of the multichannel 
EEG data streams. There exist industrial solutions (which 
aim to measure depth of anesthesia) that have been adapted 
for use in comatose outcome prediction with some success 
[8]. Unfortunately, these methods are most often proprietary, 
which prohibits critical evaluation and continuous 
improvement in a domain where the cost of misclassification 
is tremendous. One open source quantitative method that has 
been used with some success is the Cerebral Recovery Index 
(𝐶𝑅𝐼) [1].  Developed in 2013, the CRI is an important 
example of a publically available algorithm that can run at 
the bedside for outcome prognostication. Despite its 
demonstrated potential, the CRI makes several heuristic 
assumptions, and might benefit from a more principled 
approach. In this paper, we present an enhanced CRI (eCRI), 
which we believe will provide greater robustness and utility 
at the bedside for outcome prognostication. 

One of the central reasons that effective predictive models 
of comatose outcomes are difficult to realize is a lack of 
available physiologic and clinical data documenting the 
evolution of brain activity features following cardiac arrest, 
through to the outcome of interest. Accordingly, in addition 
to the eCRI, we introduce a novel multi-institutional 
database, which we collected to facilitate this study.  

II. LITERATURE REVIEW 

One prospective study by Oddo et al. compared the 
performance of smoatosensory-evoked potentials, serum 
neuron-specific enolase, EEG, and clinical exams in an 
attempt to identify the features that were most efficacious for 
the postanoxic coma prognostication problem utilizing a 
cohort of 134 patients treated with therapeutic hypothermia 
[13]. They identified EEG reactivity, incomplete brainstem 
reflexes after re-warming, and neuron-specific enolase as 
strong independent predictors of outcome at 48 hours 
following the arrest. The prediction of outcome was 
performed using ordinal logistic regression, and the 
combinations of features were found to have an AUC of 
0.89.  

Another study by Stammet et al. investigated the efficacy 
of multimodal prognostication in 75 post-cardiac arrest 
patients treated with hypothermia post-resuscitation [3]. 
Neuronal health was measured 48 hours after arrest using 
neuron-enriched s100𝛽 and neuron-specific enolase (NSE). 
The Bispectral index of the patients (an indicator of the 
depth of anesthesia) was also continuously measured over 
the first 48 hours following the arrest. Utilizing a logistic 
regression model, Stammet et al. found that a combined 
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NSE, s100𝛽 and BIS measures had significant predictive 
value, with AUC=0.95 at 48 hours following the arrest. 

It is clear from the literature that a combination of EEG 
features, NSE measures, and brain stem function after re-
warming can reliably predict patient outcomes within 48 
hours after resuscitation. The CRI, however, provides 
evidence that an equally reliable prediction might be made 
much sooner. It follows that our goal in this study is not 
simply to predict patient outcomes, but to do so as quickly 
and reliably as possible.  

III. METHODS 

A.  Data 
We collected retrospective data from 52 patients at the 

Massachusetts General Hospital (MGH), 89 patients from 
the Brigham Women’s hospital (BWH) and 26 patients from 
the University Hospital of Lausanne (UHL), Switzerland. 
All data were collected under protocols approved by the 
local Institutional Review Board and de-identified to protect 
patient privacy. EEGs were collected using the standard 10-
20 montage. Table 1 provides summary statistics of the 
population-level features for the collected sample. The 
cardiac rhythms at arrest for the sample were 16.16% 
Asystole, 35.92% Pulseless Electrical Activity (PEA) and 
44.31% Ventricular Fibrillation (VF) with 3.61% having 
unknown rhythms at arrest. In the final column of Table 1 
we provide Spearman correlation coefficients of each feature 
with the Cerebral Performance Category (CPC) of the 
sample at hospital discharge. All patient data were epoched 
into 5-minute intervals for feature extraction and later 
analysis. 

 
 

   Mean SD CPC (corr/pval) 
Age 59.59 17.23 0.23 / <0.05 
Gender (% male) 58 - 0.04 / >0.05 
ROSC (min) 26.53 23.25 -0.13 / <0.05 
Weight (kg) 88.31 21.58 -0.08 / >0.05 
Therapeutic 
Hypothermia (%) 

86 - 0.22 / >0.05 

OHCA (%) 82 - 0.19 / >0.05 
CPC at discharge 3.67 1.70 - 
CPC at 3 months 4.04 1.65 - 
CPC at 6 months 3.81 1.81 - 

Table 1: Summary statistics for our patient sample. Abbreviations: 
time until return of spontaneous circulation (ROSC); standard 
deviation (SD); out of hospital cardiac arrest (OHCA); cerebral 
performance category (CPC). 
 

B. Features, Outcome and Validation 
The selected population-based features investigated are 
shown in Table 1. We also extracted EEG-based features, 
from each available channel. We sought features that would 
quantify the complexity, connectivity and category of the 
recorded EEG. Many of these features have a history of use 
in EEG analysis more generally while others were designed 
for their potential relevance to cardiac arrest prognostication 
specifically [1]. Our complexity features included Shannon’s 

Entropy (𝐻𝑠ℎ), Tsalis Entorpy (with q=2, 𝐻𝑡!!!) [5], the 
average signal coherence in the delta band across channels 
(𝐶𝑂𝐻!) and Cepstrum coefficients (𝐶𝑃!:!) [11]. The 
maximum Phase Lag Index across channels was used as a 
measure of connectivity (𝑃𝐿𝐼!"#) [12], while standard 
deviation (𝑆𝐷), a measure of burst suppression called signal 
regularity (𝑅𝐸𝐺) [1], EEG alpha to delta band power ratio 
(𝐴𝐷𝑅), and a binary low voltage state measure (EEG less 
than 5 microVolts, 𝐿𝑉!!) characterized the EEG category. 

Our outcome of interest was the Cerebral Performance 
Category (𝐶𝑃𝐶) of the patients at discharge [10]. 𝐶𝑃𝐶 is a 
score provided by clinicians to describe the range of 
neurological outcomes upon discharge with 5 indicating 
brain death, and 1 indicating minimal neurological insult. 

We denote our feature data for each patient as 𝑋! ∈
  ℝ𝑐  ×  𝑓  ×  𝑒𝑖  . Where 𝑖 ∈ 1:  𝑁  and 𝑖  denotes the patient number, 
  𝑒! denotes the number of 5 minute epochs for a given 
patient, 𝑐 denotes the number of EEG channels, 𝑓 denotes 
the number of features and 𝑁 denotes the number of 
subjects. Given data of this form, we are interested in 
building a model that will allow us to predict positive and 
negative neurological outcomes defined as: 
 
  𝑌! =

1, 𝐶𝑃𝐶 ≤ 2
0, 𝐶𝑃𝐶 > 2 

 
In our case, the small sample size (𝑁) necessarily calls into 
question the potential extensibility of any model we choose 
to develop. To account for this issue, we employed leave one 
out cross validation (LOOCV), which repeatedly breaks the 
data into model training sets   𝑋𝑗, 𝑌𝑗  ∀  𝑗   ≠ 𝑖   , and testing sets 
{𝑋𝑖  𝑌𝑖} for each individual in our population, mirroring the 
real-world scenario of testing the system only on cases not  
previously used to train the model. 
 

C. EEG Pre-processing and Artifact Detection 
Subjects had varying lengths, densities and sampling rates 

of recorded EEG data. To address these discrepancies, we 
bandpass filtered the data between 1 and 50 Hz, re-
referenced the data to zero-mean to account for any DC 
offset in the EEG, and downsampled the signal to 100Hz. 

EEG data are prone to a wide range of artifacts that can 
infringe upon the quality and accuracy of quantitative 
estimates. To address these issues we employed a multi-
faceted artifact detection strategy. First, we identified any 5-
second EEG segments that were deemed to be statistical 
outliers. That is, segments which were 3 or more standard 
deviations from the overall population’s variance, kurtosis, 
or skew. Second, we identified artifacts with known spectral 
signatures including muscle and eye components. Lastly, we 
identified spikes (defined as segments >1 mV), and channel 
disconnections (defined as segments where Voltage = 0). 
After artifact detection, each subject was assigned a weight 
vector 𝑤! ∈   ℝ!  ×  !!  , describing the proportion of data in 
each epoch, on each channel, which was affected by artifact.  
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D. Modeling Approach 
The standard 𝐶𝑅𝐼 is formally defined as:  
 
𝐶𝑅𝐼 = !"

!
𝐴𝐷𝑅 + 𝐻𝑠ℎ + 𝐶𝑂𝐻! +   𝑅𝐸𝐺                                     (1) 

 
where  𝐶𝑅𝐼   ∈ [0,1] and a higher 𝐶𝑅𝐼 denotes a higher 
probability of a positive outcome. The 𝐶𝑅𝐼 utilizes 
normalized versions of several features already described: 
𝑆𝐷, 𝐻𝑠ℎ, 𝐶𝑂𝐻!, 𝑅𝐸𝐺 and 𝐴𝐷𝑅. These features are normalized 
using a sigmoidal transform whose coefficients were 
selected heuristically by the investigators.  

Importantly, the CRI is a non-spatial, time-independent 
indicator of comatose outcome following cardiac arrest. That 
is, EEG activity measured at differing channels and times 
are modeled as equally predictive of outcome class.  

 Our enhanced CRI (eCRI) exhibits the same assumptions, 
and was therefore generated by collapsing the data in our 
training set across epochs, and using the median channel 
value to designate a feature set 𝑃!! ∈ ℝ

!× !!!!! , and 
corresponding outcome vector 𝑃!! ∈ ℝ

!× !!!!!  for each 
patient. Next, we specified a model with a similar form as 
the CRI, but with coefficients that were determined in a 
formal statistical way.  A simple and intuitive model to 
accomplish this goal is a logistic regression, which, like the 
CRI, provides a mapping between continuous features and a 
binary outcome. The enhanced CRI is computed as: 

 
𝑒𝐶𝑅𝐼 =    !

!!!!(!!!!!
⊺!)

             (2) 

 
where 𝛽!:! describe the model coefficients.  Given the large 
number of features and small sample size, we utilized 
stepwise regression to select features that improved the 
model’s Bayesian Information Criteria (BIC). BIC is a 
useful criteria in cases like ours as it penalizes features with 
a low contribution to the model’s overall performance. 
Additionally, we weighted data residuals by the weights 𝑤! , 
(derived in our artifact detection phase) during parameter 
optimization. This allowed us to explicitly account for noisy 
data epochs as less reliable, without removing them from 
consideration entirely.  

IV. RESULTS  
We computed the CRI and eCRI on the subset of our data 
from the MGH. The weighted stepwise regression identified 
the following features as important predictors of comatose 
outcome: 𝐻𝑡!!!,𝑅𝐸𝐺,𝐶𝑂𝐻! ,𝐶𝑃!, 𝐿𝑉!! ,𝑃𝐿!"#, age, and 
ROSC. The parameter estimates, and their statistical 
significance are illustrated Table 2. Importantly, all features 
were found to have a statistically significant relationship 
with the CPC at discharge (p < 0.05). The results in Table 2 
indicate that an increase in entropy, age, regularity, 
coherence in the delta band, ROSC, phase lag index, age or a 
low voltage EEG diminish the probability of positive 
neurological outcome. The results also indicate that an 
increase in signal Cepstrum (a measure of the rate of change 

in the spectrum) improves the probability of a positive 
outcome.   

In Figures 1 and 2 we illustrate the standard and enhanced 
CRI indices applied to the patient sample respectively. 
Figure 1 demonstrates that the standard CRI measure is able 
to distinguish between the two groups effectively within 
approximately 24 hours of EEG initiation. Unfortunately, the 
estimate is incongruous with the purpose of the measure 
itself. That is, the score was designed to provide higher 
values for patients with strong probabilities of recovery, 
which is not what we observed. Figure 2 shows the results of 
our enhanced index on the same patient sample.  
 

   Parameter 
Estimate  

t-stat p-value 

Intercept -6.57 -6.24 <0.01 
𝐇𝐭𝐪!𝟐 1.71 2.15 0.03 
𝐑𝐄𝐆 2.91 6.86 <0.01 
𝐂𝐎𝐇𝛅 2.23 6.44 <0.01 
𝐂𝐏𝟐 -1.13 -5.46 <0.01 
𝐋𝐕𝟓𝛍 5.06 13.99 <0.01 
𝐏𝐋𝐦𝐚𝐱 1.68 4.89 <0.01 
Age 0.03 9.55 <0.01 
ROSC 0.02 5.91 <0.01 

Table 2: Parameter values and statistical significance for the eCRI 
logistic regression with artifact-weighted residuals. 
 

Importantly, the eCRI effectively distinguishes between 
the two groups from the onset of EEG recording and, on 
average, does a better job distinguishing between the two 
patient classes. The timeliness of our approach is especially 
worth highlighting, as care for comatose patients is costly, 
both emotionally and financially.  

 
Figure 1: The original CRI. The blue line signifies patients with 
positive neurological outcomes (CPC <=2), and the red line 
signifies patients with negative neurological outcomes (CPC >=3). 
Shaded areas represent the standard error of the sample. 
 
To quantify more precisely the abilities of the models to 
distinguish between the two patient groups, we computed the 
AUC at each hour following EEG initiation using LOOCV. 
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We also compared the performance of our method against 
the CRI’s compliment (1-CRI) to ensure a fair comparison 
of overall classification abilities of the two approaches. 

The results of our analysis are shown in Figure 3. 
Comparing the AUC of our approach to the CRI, there is a 
clear improvement in the classification performance, with a 
mean AUC improvement of 0.26.  In comparing our model 
against the CRI’s complement we observe that our approach 
more robustly classifies outcomes in the first 24 hours, while 
the traditional CRI is better able to classify outcomes after 
24 hours. Temporal differences in performance aside, our 
model exhibits an overall classification improvement of 
0.075 above the CRI’s complement.  
 

 
Figure 2: Our enhanced CRI. The blue line signifies patient with 
positive neurological outcomes (CPC <=2), and the red line 
signifies patients with negative neurological outcomes (CPC >=3). 
Shaded areas represent standard error of the sample. 
 

 
Figure 3: Comparison of overall classification performance 
overtime for the CRI, eCRI, and CRI’s compliment.  
 

V. CONCLUSION 
In this study, we looked for global, time-independent 
indicators of comatose outcome following cardiac arrest. We 
developed an alternative model to an existing quantitative 
estimate of neurological outcome, the CRI, using a dataset of 
patients from the Massachusetts General Hospital. We 
demonstrated an improvement in the overall classification 
performance of our model, as compared to the CRI.  

We view our results as an encouraging first step towards 
the development of more rigorous quantitative estimates for 
the prognostication of coma outcomes in critical care 
settings and anticipate enhanced results with additional data, 
and the deployment of more rigorous techniques that 
account for time explicitly. Importantly, this work also 
described techniques that will facilitate and accelerate the 
collection of more data in this area, and thereby allow for the 
development of larger datasets, with greater statistical 
power, and enhanced predictive performance.  
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