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Abstract

Intensive Care Units (ICUs) have high impact on the survival of critically-ill patients in hospitals.
Recent statistics have shown that only 10% of the 5 million patients admitted to ICUs in the United
States die each year. In modern ICUs, the heart's electrical and mechanical activity is routinely
monitored using various sensors. Arterial blood pressure (ABP) and heart rate (HR) are the most
commonly recorded waveforms which provide key information to the ICU clinical staff. However,
clinicians find themselves in many cases unable to determine the causes behind abnormal behavior of
the cardiovascular system because they lack frequent measures of cardiac output (CO), the average
blood flow out of the left ventricle. CO is monitored via intermittent thermodilution measurements
which are highly invasive and only applied to the sickest ICU patients.

The lack of frequent CO measurements has encouraged researchers to develop estimation methods
for cardiac output from routinely measured arterial blood pressure waveforms. The prospects of
estimating cardiac output from minimally-invasive blood pressure measurements has resulted in
numerous estimation algorithms, however, there is no consensus on the performance of the algorithms
that have been proposed.

In this thesis, we investigate the use of a third-order variation of the Windkessel model, which
is referred to as the modified Windkessel model. We validate its ability to generate well-behaved
proximal and distal pressure waveforms for a given flow waveform and thus characterize the arterial
tree. We also develop a model-based CO estimation algorithm which uses central and peripheral
blood pressure waveforms to obtain reliable estimates of CO and the total peripheral resistance
(TPR).

We applied the estimation algorithm to a porcine data set. The results of our estimation al-
gorithm are promising: the weighted-mean root-mean-squared-normalized-error (RMSNE) is about
13.8% over four porcine records. In each porcine experiment, intravenous drug infusions were used
to vary CO, ABP, and HR over wide ranges. Our results suggest that the modified Windkessel
model is a good representation of the arterial tree and that the estimation algorithm yields reliable
estimates of CO and TPR under various hemodynamic conditions.

Thesis Supervisor: Professor George C. Verghese
Title: Professor of Electrical Engineering

Thesis Supervisor: Dr. Tushar Parlikar
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Chapter 1

Introduction

1.1 Assessment of Patient State in the Intensive Care Unit

Intensive Care Units (ICUs) have high impact on the survival of critically-ill patients in hospitals.

Recent statistics have shown that only 10% of the 5 million patients admitted to ICUs die each year

[1]. This is remarkable as ICU patients are usually very unstable due to severe disease e.g multiple

organ failure.

The fragile conditions of admitted patients require close monitoring of the affected systems:

transducers are used to monitor vital signs continuously, blood samples are analyzed in special

laboratories, X-ray images are scrutinized by experts, etc, in order to narrow down the possible

causes of the observed symptoms. However, this wealth of information can overload intensivists and

lead to otherwise preventable deaths of patients [1].

The cardiovascular system is one of systems which needs to be tracked closely in order to assess

the patient's state [2]. It is characterized by several parameters which serve as important indices

of cardiac and vacsular function. Not surprisingly, extensive research has been conducted to ex-

ploit measured cardiovascular variables in order to estimate or otherwise assess variables that are

inaccessible to direct measurements. Today's ICUs routinely monitor cardiovascular electrical and

mechanical activity. Electrocardiography (ECG) is a common recording of the heart's electrical sig-

nals that helps physicians detect abnormal heart rhythms. Blood pressure is commonly monitored

at different key locations: arterial blood pressure (ABP) is measured using an arterial line inserted

into the radial artery, central venous pressure is measured using a catheter in the superior vena cava

to monitor filling pressure at the right atrium, and pulmonary artery pressure is recorded to track

left ventricular end-diastolic pressure. There are other crucial variables such as cardiac output (CO),

the average amount of blood the heart pumps out per unit time, and arterial tree parameters such

as peripheral resistance and arterial compliance which currently cannot be measured continuously



and/or noninvasively. Yet, these indices of cardiovascular performance provide critical information

about a patient's state as studies have shown that there is a high correlation between the observed

variations in these indices and some pathophysiological conditions [3].

A reliable measurement or estimate of CO could improve decision making in the ICU: under

normal conditions, CO is around 5 L/min, while under circulatory shock, it could be less than 2

L/min. Consequently, the level of cardiac output provides critical information to intensivists when

assessing a patient's state or diagnosing certain diseases.

1.2 The Cardiovascular System as a Lumped Parameter Model

Many researchers have devised elaborate models to study the dynamics of blood in the arterial

circulation [5]. Lumped-parameter models, which are based on simple ordinary differential equa-

tions, have been used to scrutinize physiological hypotheses. They model hemodynamic variables

of the cardiovascular system such as flow, pressures, and volumes. These models were subjects of

numerous identification and parameter estimation studies which permitted researchers to estimate

parameters previously impossible to measure directly [44]. Electric circuit analogs of the cardio-

vascular system may include resistors, capacitors, inductors, diodes, and source generators. Table

1.1 shows how electrical components map to physiological parameters. While some researchers ap-

Electrical Component Cardiovascular Parameter
Capacitance (F) Compliance, C (ml/mmHg)
Resistor (Q) Resistance, R (mmHg.s/ml)
Current flow (A) Blood flow, Q (ml/s)
Potential difference (V) Pressure, P (mmHg)
Inductance (L) Blood inertance, L (mmHg/(ml.s))
Charge (C) Volume, V (ml)

Table 1.1: Correspondence between circuit components and cardiovascular parameters.

plied transmission-line theory to model the hemodynamics in the circulatory system, simple models

have proved to be more practical in tracking patient's cardiovascular parameters in the ICU [3],

[26]. Lumped models, based on the "hand-pumped fire engine theory", were first introduced by

Stephen Hales in 1733, and were popularized by Otto Frank [4] a century later. Frank elucidated

the two-element Windkessel model of the arterial tree.

In the following section, we present the physiological relevance of the parameters used to model

the arterial circulation from an anatomical point of view.



1.2.1 Anatomical characteristics of the systemic arterial circulation

The arterial circulation is characterized by three basic hemodynamic elements which capture the

resistive and elastic properties of the vessels as well as the properties of the fluid: total peripheral

resistance, arterial compliance, and blood inertance. In this section, we will introduce the three key

parameters and highlight their physiological significance. We will revisit their clinical relevance in

Chapter 3.

Arterial resistance: Arterial resistance represents the resistance to blood flow in small vessels,

mainly in the arterioles. It captures the relation between pressure drop across a vessel and blood

flow through it. Under the assumptions that the flow is steady (laminar flow) and the vessel is

rigid and uniform, resistance can be quantified using Poisseuille's law which relates resistance to the

geometry (length and radius) of the vessel and the blood viscosity. Specifically,

Ra = 8L (1.1)
7rr

4

where r~ is the blood viscosity, L is the length of the rigid vessel, and r is its radius.

Macroscopically, studies have shown that arterial resistance could be determined without knowing

the vessel's geometry. Based on Ohm's law, total peripheral resistance reflects the steady component

of the arterial load: it is approximated as the ratio of mean pressure to cardiac output. Note that

this estimate of resistance is not of a single vessel, but of the entire vascular bed.

Arterial compliance: Arterial compliance is obtained from the pressure-volume relationship of a

blood vessel. It is an important determinant of the cardiac load as it measures the change in volume

in a vessel for a unit change in transmural pressure:

C A (P) (1.2)AP

Given that the arterial wall has nonlinear elastic properties, compliance is a pressure-dependent

quantity [39]: in general, as the pulse pressure increases, compliance decreases leading to a convex

V-P relation. Compliance is inversely related to elastance which quantifies the stiffness of the

arteries. Small arteries are less compliant, and therefore stiffer than large arteries. In fact, almost

65% of total arterial compliance is located in the proximal aorta, the head and upper limb vessels

[35]. It has been shown that variations in total arterial compliance are linked to various physiological

states, motivating the need for a good compliance assessment. For example, decreased compliance

has been observed in aging and hypertension [38], [42].



Blood inertance: Blood inertance, L, represents the effective blood mass which is accelerated

and decelerated by the pulsatile pumping of the heart. It captures the relationship between the

pressure drop across a vessel and the rate of change of flow as follows:

AP = LdQ(t) where L= (1.3)
dt 7rr 2

where Q(t) is the blood flow, AP is the pressure drop, r is the cross sectional radius of the vessel

and p is the blood density. Note that L is inversely proportional to r 2 while arterial resistance,

Ra, is inversely proportional to r4 . It can then be concluded that inertance is predominant in large

arteries where the resistive effects do not play an important role.

1.3 Cardiac Output Monitoring

The utility of cardiac output as an indicator of patient's state caught the attention of several physi-

cians and clinical researchers who attempted to either directly measure cardiac output or to es-

timate it from measurements of arterial blood pressure. Currently, the clinical gold standard for

the assessment of cardiac output in the ICU is an intermittent, highly invasive measurement via

thermodilution.

1.3.1 Measurement techniques of cardiac output

Investigators have developed various schemes to measure cardiac output: thermodilution, Doppler

ultrasound, and a flowmeter, amongst others.

1. Thermodilution: Cold saline is injected at the pulmonary artery to create a thermal deficit

and the rate of change in temperature downstream at a distal artery is measured. Cardiac

output is inversely related to the area under the resultant temperature-time curve. It is a

highly invasive procedure, possibly increasing a patient's instability, as a Swan-Ganz catheter

must be advanced through the vena cava and the right heart to the pulmonary artery. In

today's ICUs, thermodilution is performed on critically-ill patients and requires experienced

operators.

2. Doppler ultrasound: This method takes advantage of the relation between stroke volume

and the velocity of blood across the aorta, v(t), which can be measured via Doppler ultrasound.

Specifically,

CO = HRx SV where SV = A v(t)dt (1.4)

where A is the cross sectional area of the aorta. Although it requires expensive equipment

in addition to a trained ultrasound technician, it is the only scheme which measures cardiac



output non-invasively.

3. Flowmeter: An ultrasonic flow probe is placed around the aorta to report instantaneous flow

levels. Stroke volume, and consequently cardiac output, can be obtained by integrating the

resulting flow waveforms. Contrary to its apparent simplicity, it is a highly invasive procedure

as the placement of flowmeter requires thoracotomy. It is only used for research purposes in

animal studies.

Although the above methods can be very reliable and accurate, the benefit of measuring cardiac

output comes at high cost: for some procedures the incurred cost is from their invasiveness which

exposes critically-ill patients to higher risk, while for other procedures the cost is due to the expense

of the methods themselves. Consequently, researchers have proposed a different approach to assess

cardiac output, namely to derive estimates of CO from arterial blood pressure waveforms which are

routinely measured.

1.3.2 Model-based cardiac output estimation

The possibility of estimating cardiac output from measurements of ABP has been extensively re-

searched. At a first glance, the estimation problem is easily solved. However, it rapidly becomes

clear that the complexity of the estimation problem is dominated by the complex relationship be-

tween CO and ABP. Till now, there is no consensus on a single relationship between pressure and

cardiac output or even on the performance of the algorithms that have been proposed in the past.

Sun et al. [13], for example, developed an algorithm that applies 11 reasonably accepted methods of

estimating CO from peripheral ABP recordings to 120 patients from the MIMIC II database [24]. He

concluded that Liljestrand and Zander's method [7] for computing a pressure-dependent compliance

for the two-element Windkessel model yields the most accurate CO estimates from ABP waveforms.

More recent approaches, not covered in Sun's work, have been developed to continuously estimate

CO along with other cardiovascular variables from the beat-to-beat fluctuations in ABP waveforms.

Blind source identification is an approach adopted by Reisner et al. [10] and Mukkamala et al. [11]

to obtain continuous CO estimates from multiple peripheral pressure waveforms. Mukkamala and

co-workers suggested an alternative scheme which uses inter-beat fluctuations in ABP waveforms to

quantify relative variations in cardiac output [12]. Cycle-averaged techniques are currently being ex-

plored by Parlikar et al. [18], [19] to obtain beat-to-beat estimates of cardiac output from peripheral

ABP waveforms.



1.4 Thesis Aims

This thesis is aimed at characterizing heart function (in terms of CO and TPR) using ABP waveforms

in the modified Windkessel model. The thesis objectives are as follows:

1. To provide an exhaustive literature review of Windkessel-type models and related parameter

estimation algorithms.

2. To develop an estimation method for computing beat-to-beat estimates of CO and TPR by

capturing intra-beat dynamics of ABP waveforms.

3. To validate the performance of CO estimation method on porcine data.

1.5 Thesis Outline

The thesis is organized as follows:

1. Chapter 2, Windkessel- Type Models, presents the theory of the two-element Windkessel model

and discusses more complex variations, the three-element Windkessel model and the modified

Windkessel model. It highlights possible choices for simulating the left ventricle and validates

the modified Windkessel model.

2. Chapter 3, Parameter Space Analysis, develops a sensitivity analysis platform followed by a

detailed literature review of methods for parameter estimation in Windkessel-type models.

3. Chapter 4, Beat-by-Beat Parameter Estimation, explains the theory behind nonlinear least

squares optimization and presents our method for estimating CO and TPR. It then summarizes

the details of a continuous estimation scheme.

4. Chapter 5, Results, presents the performance of our CO estimation algorithm on porcine data.

5. Chapter 6, Conclusion and Future Work, discusses the limitations and advantages of our

estimation algorithm and suggests possible improvements for future work.



Chapter 2

Windkessel-Type Models

The cardiovascular system has been extensively studied over the centuries. In 1899, Otto Frank

formulated the concept of cardiac work through one of the earliest modeling approaches in car-

diovascular physiology. Subsequently, his theory of the Windkessel model was employed by many

researchers to develop electrical and mechanical analogs in order to understand and predict the

behavior of the cardiovascular system. In a study by Campbell et al. [28], it was observed that

as the number of parameters increases in a Windkessel model, the parameter predictions and the

waveform fits to experimental data were improved. However, the challenge remains to identify all

parameters in complex models so to obtain good pressure and flow waveform fits. In this chapter,

we will first present the original Windkessel model, followed by the three-element variation of the

Windkessel model before introducing and analyzing the model of interest, the modified Windkessel

model. We then explore the effect of four different pulse shapes for blood flow into the arterial tree

on the shape of the arterial pressure waveforms. Finally, we validate the choice of pulse shape and

the modified Windkessel model through forward modeling.

2.1 Windkessel Model

The Windkessel model developed by Otto Frank represents the heart as a current source that pumps

blood into the arterial system, which is lumped into a single resistance and a single compliance [4].

The electric circuit analog of the Windkessel model, shown in Figure 2-1, simulates blood pressure

dynamics in the systemic arteries. This two-element Windkessel was introduced with an impulse

train as the input to simulate the pumping heart. The area of each impulse represents the stroke

volume, which is the amount of blood ejected by the left ventricle during each cardiac cycle.

The heart pumps blood into the vessels during systole through the aorta. The ejected blood

circulates through the arteries, represented by a capacitance corresponding to the elastic properties

of all the arteries combined, and a resistance to flow, resulting from viscous dissipation in the
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Figure 2-1: a) Left ventricle outflow modeled as an impulse train, b) The Windkessel model of the
arterial system.

arterioles captured in the Windkessel model by the dissipation of the energy stored in the capacitor

through the resistance. This model simulates the aortic pressure waveform as an exponential decay

during diastole which approximates real pressure waveforms in large arteries. The time constant of

the decay is determined by the product of resistance and the compliance.

Mathematical framework: The flow continuity equation applied to the Windkessel model yields

dV(t)
dt = Q(t) - Qout(t) (2.1)

where V is the arterial blood volume. Q(t) corresponds to the current source in the two-element

Windkessel model. Qout(t) is the flow through the arterioles (the resistor). Since outflow of blood

is observed at the resistance Ra,

Qout(t) =P(t) (2.2)
Ra

where P(t) is the pressure drop across the resistance. In the case of a linear pressure-volume

relationship for the arterial system, total arterial compliance can be written as

dV(t)a (t)= (2.3)
dP(t)

Substituting Eq. 2.2 and Eq. 2.3 in Eq. 2.1 results in the governing Eq. 2.4 for the two-element

Windkessel.

Q(t) = Ca dP(t) +P(t) (2.4)
dt Ra

Eq. 2.4 can be interpreted as follows: the heart forces blood out of the ventricle, some of which

charges the capacitor, or in other words inflates the large proximal arteries, and the rest dissipates

through the resistance.

Although this model has been used by many researchers as a good approximation of the arterial

system's behavior, it has some obvious limitations when used to model peripheral arterial blood

n

itMe



pressures. One of its major weaknesses is that it does not account for the propagation effects

through the vessels: it assumes that the pressure rise occurs simultaneously in the entire arterial

tree [27]. However, the properties of the distal vessels influence the shape of the peripheral arterial

pressure waveform. The model also implies infinitely high wave speed in diastole and ignores the

effect of wave reflections on pressure waveforms. Another obvious limitation of the two-element

Windkessel model, which will be revisited in Section 2.5.2.2, is that it accurately captures only the

behavior of the input impedance as seen by the left ventricle at low frequencies but fails at higher

frequencies [34]. Consequently, a more detailed model is needed to account for the wave propagation

effects and the high frequency behavior of the arterial input impedance when building a model for

radial pressure waveform characterization.

2.2 Three-Element Windkessel Model

A three-element Windkessel model was proposed by Westerhof [29] to mimic the arterial load faced

by the pumping left ventricle of the heart. Based on the observations of the human cardiovascular

system, the arterial tree is characterized by an input impedance which has some well-known features.

The magnitude of the input impedance, Zin, is large at DC and decreases rapidly for frequencies

as low as 3 Hz [29]. It then remains fairly constant for higher frequencies. The phase however, is

observed to be zero at DC, negative for low frequencies and approximately zero for high frequencies

[29]. The original Windkessel model does not translate these properties reliably at all frequencies:

at high frequencies, the input impedance as modeled by the two-element Windkessel provides a poor

representation of the actual aortic impedance [34]. Figure 2-2 shows the three-element model as

proposed by Westerhof.

Q(t) Ra

Figure 2-2: The three-element Windkessel model developed by Westerhof.

It consists of a characteristic impedance, Z,, in series with a parallel arrangement of total arterial

compliance, Ca, and systemic vascular resistance, Ra. The input impedance then becomes:

R,
Zin = Zc + a (2.5)

1 + jwRaCa

Zc was introduced to account for the effects of inertia and proximal arterial compliance at high



frequencies. For large arteries, Zc can be represented as where L is blood inertance per unit

length and Cap is the proximal compliance per unit length.

The governing equation given the circuit topology in Figure 2-2 and an assumed flow waveform

Q(t) is

dP(t) dQ(t)P(t) + RaCa " = (Ra + Zc) -Q(t) + ZcRaCa dQ(t) (2.6)
dt dt

where P(t) is the pressure across the resistor. This model has undergone extensive research: Wessel-

ing [51] investigated the applicability of the three-element Windkessel model for the reconstruction

of the cardiac flow waveform from peripheral blood pressure waveforms. Noordergraaf et al. [52] at-

tempted to estimate the effective length of the arterial system using this variation of the Windkessel

model.

So far, we have presented the original two-element Windkessel model and a higher order three-

element model whose complexity is defined by that of the characteristic impedance. Subsequent

researchers aimed to replace Zc it by different configurations of resistances, compliances and inertance

components. One successful attempt lead to the development of the modified Windkessel model

which is described in detail in the following section.

2.3 Modified Windkessel Model

The modified Windkessel model (MWK) is one of the most widely used variations of the three-

element Windkessel. It is one of the simplest models which faithfully reproduce intra-beat variations

in pressure waveforms. It lumps the arterial tree into two major compartments, proximal and distal.

Figure 2-3 shows the electric analog of the modified Windkessel model intended to approximate the

L
Pap(t) Pad(t)

Q(t) C
C Ra

-- Cap -- Cad P

Figure 2-3: The modified Windkessel circuit model. Cap represents the elastic capacitance of large
arteries close to the heart, while Cad represents that of muscular arteries further away from the
heart. L represents the inertance of the flowing blood. Ra represents the peripheral resistance and
Pv represents a constant venous pressure component.

radial pressure waveform. Given that properties of the distal arteries differ from those close to the

heart, it is advantageous to split the whole-body compliance used in the original Windkessel into



two: the compliance of large elastic arteries, Cap, and the compliance of the more muscular distal

arteries, Cad. In fact, the small arteries which are further away from the heart are stiffer than the

elastic arteries and consequently, their capacitance is much smaller than that of large arteries. The

latter was shown by Watt and Burrus [47]. A study by Rietzchel et al. [48] confirmed that Cad

corresponds to the compliance of distal arteries due to its sensitivity to vasodilatory experiments,

a property not apparent for Cap. Clinical studies have shown that Cad is reduced with aging,

hypertension or diabetes which makes it a good indicator of cardiovascular risk [50].

The modified Windkessel model accounts for the flow propagation effects by introducing an

inductor L between the two capacitances representing blood inertance along the fluid column. Ne-

glecting resistive losses, the pressure difference between the two extremes of a vessel is proportional

to the acceleration of the blood as it moves from one end to another by a factor equal to the blood

inertance. Also, the model lumps the venous circulation into a constant pressure source, Pv, which

is equal to the downstream pressure, assumed to be mean venous pressure. The pumping heart is

modeled as a pulsating current source as will be discussed in detail in Section 2.4.

2.3.1 State space model derivation

Given that the model is composed of three energy storage elements, a state space model with three

states is sufficient to fully describe the dynamics of the system. Using Kirchhoff's voltage and current

laws, KVL and KCL respectively, we obtain the following three equations:

Q(t) = Cap dPap(t) + () (2.7)
dt

dIi(t) Pap(t) Pad(t)
dt L L

dPad(t) Pad(t) - Pv
Ii(t) = Cad dt + (2.9)

dt Ra

where Pap(t) is the voltage across Cap, Pad(t) the voltage across Cad, and II(t) the current through

the inductor, L. The input to the system is Q(t). The resulting state space model is then:

Pap(t) 0 0 Pap (t) Q(t)
d C. Cp

Ii(t) = 1 0 - Ii(t) + 0 (2.10)
Pad (t) 0 1 -1 Pad(t)Cad RaCad RJ Cad

which can easily be implemented on a digital computer.

By rearranging the third state equation and substituting the resulting expression for I4 (t) in the



first state equation, we get the input/output equation of the model:

dPap (t) dPad(t) Pad(t)
ap dt dt Ra

If we were to assume that the voltage drop across the inductor is negligible (Pad(t) x Pap(t)), then

Eq. 2.11 reduces to the governing equation of the two-element Windkessel model, Eq. 2.4 with

Ca = Cad + Cap.

2.3.2 Previous uses of the Modified Windkessel model

Resonant circuits have been widely used in the literature to capture the dynamics of the radial

pressure waveform. For instance, Burattini et al. [43] analyzed models with different frequency

responses to determine the order of the necessary lumped model to faithfully represent the behav-

ior of the arterial system. Spencer et al. [6] developed in 1963 the first version of the modified

Windkessel model, shown in Figure 2-4, in order to generate aortic and femoral pressure waveforms

simultaneously.

Figure 2-4: First version of the modified Windkessel model adapted from the Handbook of Physiology
by Spencer [6].

In 1967, Goldwyn and Watt [27] formally introduced the modified Windkessel model and the

diastolic decay method, which will be discussed in detail in Section 3.4.1.3. In 1976, Watt and Burrus

proposed a Gauss-Newton least-squares estimation method for the identification of model parameters

[47]. Clark et al. [8] developed an estimation scheme of the parameters of the modified Windkessel

based on three distinct arterial pressure measurements and an estimate of cardiac output. Guarini

et al. [9] used this model to determine the best left-ventricular model function and its optimum

parameter values using radial pressure waveforms and cardiac output. Segers et al. [50] applied

their proprietary pulse pressure method for the estimation of arterial compliance in the modified

Windkessel model.

While this third-order model has been extensively used to estimate parameters characterizing

the arterial tree, most methods required the measurement of flow and pressure as will be discussed



in Section 3.4. Since flow measurements are invasive, the applicability of these methods is limited

in clinical settings. The latter observation justifies the need for a method which estimates cardiac

output and resistance with minimal invasiveness from pressure measurements.

2.4 Left Ventricle as a Pulsating Source

So far, we have considered the left ventricle to eject blood in an impulsive manner. However, the

assumed shape of the pulsatile flow is critical to the left ventricle's the flow dynamics. In this section,

we explore four different blood flow waveforms which will be evaluated through qualitative validation

of the resulting pressure waveforms. We will fix the modified Windkessel model's parameters at some

nominal values that are representative of healthy humans, summarized in Table 2.1.

Parameter Nominal value
Cad 0.15 ml/mmHg
Cap 1.45 ml/mmHg
Ra 1.0 mmHg.s/ml
L 0.025 mmHg/(ml.s)
SV 80 ml/beat
HR 60 bpm

Table 2.1: Nominal parameter values of the modified Windkessel model.

Left ventricle outflow as a impulse train: The Windkessel model was derived using an impulse

current source in which the area of each impulse is equal to the stroke volume of the heart (under

normal conditions about 80 ml/beat).

Left ventricle as an impulse train
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Figure 2-5: a) Left ventricle as a impulse train source, where each impulse is of
ml/beat; b) proximal (dashed) and distal (solid) artery pressure responses to an
the modified Windkessel model.

magnitude of 80
impulse input in



Specifically,

Q(t) = SVk.6(t - tk) (2.12)
k

where SVk is the stroke volume of the kth cycle, and tk s the onset time of the kth cycle.

When tested with the modified Windkessel, the resulting pressure waveforms did not resemble

the shape of physiologic waveforms. Figure 2-5 shows that the impulsive current source gives a

poor representation of the pumping heart: the large magnitude of the generated pulse pressure,

the sharper notch in the peripheral pressure waveform, and the sharper peak in the aortic pressure

waveform are all evidence that a better characterization of the pumping heart is required. The state

space model illustrates the dependency of the rate of change of proximal pressure, dt , on the

instantaneous flow, Q(t): at the onset of each beat, Q(t) is very large which translates into an almost

infinite slope in the proximal pressure waveform.

Since the stroke volume is ejected throughout systole, wider pulse trains over systole were con-

sidered to capture the ejection behavior of the left ventricle better.

Left ventricle outflow as a rectangular pulse train: A pulse-shaped source was then tested

such that flow is given by:

Q(t) SV k (u(t - tk) - u(t - (tk + Ts))) (2.13)

Left ventricle as a rectan la ul sou . Pr ue wavefm rullin f a r ar L in

timr ("ec)

I
(a)

Figure 2-6: a) Left ventricle as a rectangular pulse of height 240 ml/s and width ½VT sec; b)
proximal (dashed) and distal (solid) artery pressure responses.

The resulting output can be seen in Figure 2-6. The pulsating source results in pressure waveforms

which illustrate many of the characteristics exhibited by physiologic data such as the smooth notch

in the distal pressure waveform. However, the peak-to-peak magnitude of each waveform is less than

the peak-to-peak amplitude observed in measured data. Moreover, the maximum pressure peaks

d
fSS



occur at the end of systole while recorded waveforms show that pressure peaks occur before the end

of systole.

Consequently, other pulse shapes are tradeoffs between impulsive flow and constant flow during

systole. A right angle triangle was considered to capture the large peak-to-peak value of the pressure

waveforms from impulsive flow and the smooth notch from rectangular pulse flow.

Left ventricle outflow as a triangular pulse train: A more suitable source might be a right

angle triangle (Figure 2-7) whose height is adjusted so that its area equals stroke volume. Specifically,

Q(t)=(-2.SVk ( - +2.SVk (u(t- t)-(t(tQ* T? (t - k) + , )( t- k) - U8 -(k +T.))) (2.14)
\ -S .

Such pulsatile flow is easily parameterized since the height of the triangle, Qmax, and the width

of the base, T8, are sufficient parameters to characterize the entire flow waveform. Studies of arterial

flow have concluded that the duration of systole, Ts, is best approximated in humans by 3' [21].

Hence, T, is calculated from heart rate and the only remaining unknown is Qmax.

Triangular sources have been previously explored by Segers et al. [30], [35] and validated as an

alternative to measured flow by comparison of their frequency contents. However, in their studies,

maximum flow, Qmax, was assumed at t = T_ instead of at the onset of the beat.3

time (sec)

(a)

Output pressure weveforms with triangular pulse

time (sec)

(b)

Figure 2-7: a) Left ventricle as a triangular pulse source, b) distal artery pressure (solid), and
proximal artery pressure responses (dashed).

Figure 2-7 shows the response of the modified Windkessel model to a right angle triangular pulse

train input.

Left ventricle outflow as a parabolic pulse train: Although the triangular flow discussed

above resulted in well-behaved pressure waveforms, there is no physiologic explanation why such a

shape should be assumed for flow. Instead, by inspecting flow waveforms from porcine recordings,



it became apparent that a parabolic flow would be more suitable to fit measured arterial flow

waveforms. The parabola can be described by two parameters similarly to the triangular pulse.

Assuming flow is exactly zero during diastole, the general form of parabolic flow is:

Q(t) = (a(t- tk) 2 + b(t - tk)) (u(t - tk) - u(t - (tk + T,))) (2.15)

where
-6 -SVk

a =
T
3

6 SVk
b=-

T 2 (2.16)

The maximum flow, Qmax, occurs at E and the corresponding value is2

3Tk -a -T2

Qmax = - COk -2T, 4 (2.17)

Figure 2-8 shows flow as a parabolic pulse and the resulting pressure waveforms. It can be concluded

from observing the morphology of the pressure waveforms that parabolic flow leads to well-behaved

pressure waveforms while still preserving the physiologic properties of the flow waveform.

Left ventricle as a parabolic pulse train
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Pressure waveforms resulting from parabolic flow
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Figure 2-8: a) Left ventricle as a parabolic pulse source; b) pressure waveforms in response to
parabolic flow: distal artery pressure (solid), and proximal artery pressure (dashed).

In the next section, we validate the modified Windkessel model by comparing the simulated

pressure waveforms to measured waveforms.

\ / \ /



2.5 Modified Windkessel Model Validation through Forward

Modeling

The modified Windkessel model presented above is the basis of the mathematical framework which

we use to estimate cardiac output and arterial resistance as will be discussed in Chapter 4. In

this section, we validate the input pulse shape and the output pressure waveforms through forward

modeling. While we had access to human data provided by the MIMIC II database [24], time and

frequency domains validation was conducted on porcine data collected at MIT [12]. Figure 2-9 shows

a portion of continuous pressure and arterial flow waveforms from pig #5.
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E5
010 100
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150EE 1000.
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Figure 2-9: Pig #5 arterial flow and pressure waveforms.

2.5.1 Model validation in the time domain

Validation of parabolic flow: In Section 2.4, different pulse shapes were presented and their

ability to characterize arterial flow was discussed. We concluded that parabolic flow provided the best

flow morphology. In Figure 2-10, we show one cycle of measured arterial flow, AF, and the simulated

parabolic flow. Measured AF exhibits reflective flow at the aorta due to the closure of the aortic

valve. We ignore the negligible diastolic retrograde flow. The resulting fit may then underestimate

or overestimate the stroke volume for the corresponding beat, which makes it impossible to perfectly

account for the entire flow dynamics.

In Section 2.4, we qualitatively validated the pressure waveform as the response of the modified

Windkessel model to parabolic flow. In the following paragraph, we compare measured pressure
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Figure 2-10: Measured arterial flow (dashed) and the corresponding fit using parabolic shape (solid).

waveforms to the model's pressure outputs.

Pressure waveform fits: While the use of the modified Windkessel model was motivated by its

ability to capture oscillatory behaviors in diastole, it was observed that it best represents porcine

distal pressure waveforms when measured at the femoral artery where pressure waves do not exhibit

as many reflections as at the radial artery. Measured radial artery pressure waveforms, rABP,

are difficult to capture due to the high reflective nature of the measured waveforms. Most rABP

waveforms qualify as Type A beats where the first peak is lower than the following one [31]. Figure

2-11 shows the resulting fits to a central aortic pressure beat and a femoral arterial pressure beat.

It can be seen that, for a well chosen set of parameter values, the modified Windkessel model

yields good fits to both proximally and distally measured pressure waveforms. The systolic portion

of the measured pressure cycle in Figure 2-11 are well captured at both locations. The only major

discrepancy is observed in the diastolic representation of the distal pressure: the notch in the modeled

distal pressure is not as damped as in the measured femoral artery pressure, fABP.

2.5.2 Model validation in the frequency domain

Many studies have focused on frequency domain methods to determine transfer functions that char-

acterize the transformation between pressure waveforms from different sites in the arterial system

[14], [15]. In analyzing the modified Windkessel model, we treat it as a linear time invariant (LTI)

system. Since exponentials are eigenvectors of LTI systems, the Fourier decomposition of the output

can be calculated by multiplying the Fourier coefficients of the input by the transform of the impulse
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Figure 2-11: a) Central aortic pressure and b) femoral arterial pressure generated by the modified
Windkessel model.

response of the system. Following the work of many researchers who analyzed Windkessel-type mod-

els in the frequency domain, we validate the modified Windkessel model's setup as presented above

by deriving the system's transfer function and analyzing its response to a parabolic input function.

2.5.2.1 Derivation of the system's transfer function

Given that the system has two sources, the current source representing the heart and the constant

venous pressure Pv, the transfer function of the system with input Q(s) and output Pad(s) can be

determined by superposition as follows:

Pad (S) = HI (s)Pv(s) + H2 (s)Q(s) (2.18)

where Hi(s) and H2(s) are the transfer functions relating the distal pressure to Pv(s) and Q(s)

respectively. The resulting expression for Pad becomes

Pv LCapS2•- + RaQ(s)
Pad (S) = ) 2 + LCapCadRaS3  (2.19)1 + Ra(Cap ad@ apg2 + aad + s3

where Pv(s) = - (2.20)

When setting Pv to 0 mmHg, Pad(s) can be obtained by simply substituting the transform of the

input, Q(s), into the transfer function above. The impulse response of the system, when Pv is 0

mmHg, is shown in Figure 2-12. Note that it corresponds to the impulse response of the modified

Windkessel model with the parameters set at values corresponding to pig #5 from our data set

during the initial steady state, (Ra = 1.814, Cad = 0.045, Cap = 0.35 and L = 0.04).

The impulse response is characterized by a damped ringing with a period of T - 0.27 sec.
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Figure 2-12: The impulse response of the system when Pv = 0 mmHg.

This ringing is due to the exchange of energy between the inductor L and the distal compliance

Cad. The natural frequency of the system is equal to 1 , which is equivalent to a period

of 21rV(LCad) - 0.27 sec. The exponential decay has a time constant that is almost equal to

Ra(Cap + Cad) = 0.72 sec.

As a validation scheme of the transfer function, the system's impulse response was convolved

with the parabolic pulse train, shown in Figure 2-8 and then added to the impulse response of the

contribution of Pv. Figure 2-13 shows the resulting output. The output is mathematically described

by

Pad(t) = L-1{Hi ( s )Pv (s)} + h2 (t) * Q(t) (2.21)

System response to a triangular pulse train

Unme (sec)
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Figure 2-13: a) Pad(t) resulting from convolving the impulse response of the system with a parabolic
input. b) Pad (t) resulting from solving the simulation with parabolic flow.



where h2(t) is the impulse response of the modified Windkessel model relating blood flow to

distal pressure. Comparing the pressure waveforms in Figure 2-13, it can be seen that the waveform

resulting from the convolution with the impulse response contains the basic information of the

state-space model output Pad(t).

2.5.2.2 Comparison with two-element Windkessel

While there are many limitations of the two-element Windkessel, it has been argued that models

with higher complexity do not necessarily have great impact on the goodness of the resulting pressure

waveform fits. This is mainly due to the narrow range of the frequency content of analyzed signals.

The transfer function of the modified Windkessel model, when Pv is set to zero, is

Pad _ ) LCapCadPad (S) LCpCd (2.22)
Q(s)+ ap+Cd 1 + 2 +8 3

LCapCadRa LCapCad RaCad

At low frequencies, Eq. 2.22 can be approximated as

Pad(S) Cap+Cd (2.23)
Q(s) s + Ra(Cap+C.d)

Since the frequency content of pressure waveforms is most dense over the first three harmonics,
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the use of the two-element Windkessel as a reasonable model of the arterial tree is justified. At low

frequencies, the simple Windkessel model and the modified Windkessel model have the same transfer

function. Figure 2-14 shows the magnitude and phase of the transfer functions for both models. The

models diverge for frequencies greater than 12 Hz. However, it is hoped that this discrepancy, and

specifically the differences in the phase plots, will improve the fit of distal pressure waveforms which

exhibit wave reflections and propagation effects.

From the heart's perspective, the input impedance faced by the outflow of the left ventricle is

given for the modified Windkessel model as follows:

RaCadS2 + Ls + Ra
RaLCadCapS3 + LCaps 2 + Ra(Cad + Cap)S + 1

The input impedance in Eq. 2.24, calculated at some nominal values of the parameters, has two

zeros and three poles. However, it was shown by Watt and Burrus [47] that the two zeros lie on top

of two poles, leading to a first order system, the one described by the two-element Windkessel with

input impedance.

Zin  Ra (2.25)1 + RaCas

This is mainly due to the effect of the much higher storage ability of proximal arteries which masks

the effect of distal compliance as well as the blood inertance.

2.5.2.3 Fourier analysis

As mentioned above, exponentials are eigenfunctions of this system's transfer function. We tested

whether processing the kth harmonic of the input yields the kth harmonic of the output. Let dk be

the kth Fourier coefficient of the output Pad(t) and ck be the kth Fourier coefficient of the input

Q(t). Theoretically, dk and ck should be related as follows:

dke-J J t = ckH j k )e-k t (2.26)

In order to validate whether the system behaves according to theory, the Fourier series coefficients

of the input Q(t) and those of the output Pad(t) were determined and the original signals were

compared to the reconstructed signals from Fourier approximations using k harmonics. Figures 2-15

shows this approximation for k = 3.

Table 2.2 shows that the system indeed behaves in an LTI manner; the exponentials serve as

eigenvectors and the Fourier coefficients are multiplied by the magnitude of the transfer function at

the corresponding frequency to give the Fourier coefficients of the output, the radial pressure. We

will revisit the Fourier analysis in Chapter 4.
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Figure 2-15: Fourier series representation up to the 3r d harmonic of a) parabolic input; b) resulting
femoral pressure waveform.)

k=O k=1 k=2 k=3 k=4

ICkI 54.984 46.785 27.255 7.596 3.259
JHI 1.814 0.280 0.250 0.082 0.030

ICkllHi 99.741 13.100 6.814 0.623 0.098
Idk| 93.841 11.729 6.551 0.767 0.126

Table 2.2: Validation of the transfer function. |HI was obtained using Bode plot values at specific
frequencies in MATLAB.

2.6 Concluding Remarks

Though the two-element Windkessel model is a reasonable representation of the arterial tree as

viewed from the left ventricle, it does not fully characterize the morphology of the pressure wave-

forms, which contains valuable information about parameters of the arterial tree. These parameters,

if estimated, would serve as useful indices of arterial diseases. The modified Windkessel model cap-

tures in more detail three characteristics of the arterial circulation: compliances of proximal and

distal arteries, resistance to flow, and blood inertance. It presents a balance between system com-

plexity and ability to faithfully model the arterial system. In the following chapter, the parameter

space of the modified Windkessel model will be analyzed before proposing an estimation scheme of

arterial resistance and cardiac output.





Chapter 3

Parameter Space Analysis

In the previous chapter, we validated the modified Windkessel model as a reasonable representa-

tion of the arterial tree through forward modeling: we assumed a given functional shape for the

input flow and qualitatively assessed the goodness of fit of the resulting pressure waveforms. In

an ICU setting, pressures are routinely measured with minimally-to non-invasive procedures using

intravenous pressure transducers or cutaneous sensors, while measurements of cardiac output re-

quire highly invasive procedures. In Chapter 1, we presented the most widely used techniques for

the assessment of cardiac output in the ICU: physicians are expected to make decisions based on

intermittent measurements of cardiac output via thermodilution [52]. It becomes apparent that

there is high demand in the instrumentation market for a device or an algorithm which reports

cardiac output continuously without the risk associated with invasive procedures. In this chapter,

the parameter space of the modified Windkessel model will be analyzed in the scope of estimating

cardiac output, and as many model parameters as possible, from measured pressure waveforms.

3.1 Model Parameterization

As discussed in Chapter 2, the modified Windkessel model lumps the elastic properties of the arterial

tree into two compliances, Cad and Cap, separated by an inductor, L, and lumps the resistance to flow

in the arterial tree into a total arterial resistance, Ra. The significance of the arterial compliances

in the modified Windkessel model have been extensively discussed. Studies have concluded that the

distal compliance, Cad, could be considered as "reflective" and "oscillatory" compliance [50] and

attempts to estimate it over the diastolic portion will be presented in section 3.4. The latter faced

the criticism of many researchers [48] [49]: it is controversial to claim estimation of the "reflective"

compliance from information in diastole when it is known that reflections are greatest during systole.

Segers argued that the distal compliance has "no straightforward physical interpretation" given that

his study of the "oscillatory" compliance, Cad, could not attribute the distal compliance to any



specific location along the arterial tree [50].

The model as defined in Figure 2-3 also accounts for the effective downstream pressure, Pv, which

can be considered as the nonzero mean circulatory pressure [44]. It is modeled as a constant pressure

source which takes a nominal value of 10 mmHg in humans.

Based on our previous analysis in Section 2.4, the input flow to the modified Windkessel model

is best characterized by a parabolic pulse train which has two degrees of freedom: /3 = , the ratio

of the beat duration T to the duration of the systole Ts, and Qmax which was introduced earlier in

Eq. 2.17. For human data sets, 3 can be approximated by 3vT as it has been shown that T8 = ' 3

[21]. However, this approximation does not hold for pigs: in our porcine data set, 3 is around 2.4

as seen from flow measurements.

Given the complexity of the model, many issues arise mostly from the nonlinearity of the model in

the parameters. Therefore, we will first explore the sensitivity of the simulated pressure waveforms

to all passive components in the circuit, Ra, Cad, Cap and L, as well as to the two sources in

the circuit, Pv and Qmax. Subsequently, we will analyze the sensitivity matrix to determine which

parameters could be resolved accurately using subset selection algorithms.

Qualitative effect of each parameter on pressure waveform: Many researchers attempted

to determine the specific local effect of each parameter on pressure intra beat dynamics. Segers et

al. [50] explored the effect of each component on the morphology of the diastolic portion of radial

artery pressure waveforms: they observed that the time constant of the diastolic decay is dictated

by Ra and Cap, while the oscillatory nature of the decay is mainly influenced by L and Cad. Blood

inertance, L, has the most impact on diastolic dynamics: a large L causes the diastolic portion

of the beat to be damped. They also investigated the effects of pairs of parameters: higher Ra

and Cap yield higher end diastolic pressure, while higher Cad and lower L lead to higher oscillatory

characteristics. These conclusions are in line with the observations made in Section 2.5.2.1. We

found that the impulse response of the modified Windkessel model had a time constant equal to the

product of the total arterial compliance by the total arterial resistance. We also remarked that it

had a natural frequency equal to 27LCad

3.2 Sensitivity Analysis

When performing sensitivity analysis, one is interested in measuring the effect of each of the pa-

rameters on the output, the pressure waveforms Pad(t) and Pap(t) in our case. In other words, one

would like to assess the change in pressure, AP, resulting for a small perturbation AOi in parameter

Oi. By performing a Taylor expansion of AP, one can see that a perturbation AOi in parameter 0i

from its nominal value 0' translates into a change P .- A0, in pressure: the partial derivative •

sufficiently captures pressure waveform sensitivity with respect to parameter Oi.
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As indicated in the mathematical framework of the modified Windkessel model in Section 2.3,

the model is fully characterized by three differential equations, each corresponding to one of the

energy storage elements. It is therefore tedious to analytically determine closed-form equations

for the sensitivity of P(O, t) to parameter 0B, aP(O,t) where 0 = [0 1," •, n0]. Consequently, we

approximated the partial derivative by a two-sided finite-difference as shown in equation (3.2).

OP(O, tj) P(09 + A0j; tj) - P(O° - AOL; tj) P(O° + AO; tj) - P(0O - A0; tj) (3.2)(00 N(3.2)80 ( o + Aei) - (oo - Aoi) 2Aej

where P(09 ± AOi; tj) is the resulting pressure waveform resulting for the perturbation of parameter

0i by ±AOi.

3.2.1 Scaling of the parameter sensitivities

Since the parameters under consideration span five dimensions, comparing the different pressure

sensitivities is not straighforward. The physiological ranges of those parameters are quite different,

which invalidates any relative comparison of pressure sensitivities. In order to avoid the discrepancies

in their order of magnitude, a common technique is to normalize the parameter perturbation in Eq.

3.2 by the nominal values of a given parameter, except when the nominal parameter value is zero.

Consequently, the sensitivity row-vector of a data point P(tj) is:

oRa OCap DQmax Pv Iad L

Also, since the pressure waveform spans a wide range of values within each beat, it might be useful to

normalize the absolute change in pressure in Eq. 3.2 by the nominal pressure values along the beat.

Hence, the resulting sensitivity measure becomes a measure of elasticity as defined in economics:

percentage change in output for a given percentage change in a parameter.

3.2.2 Deriving the sensitivity matrix

So far, we have introduced the notion of sensitivity of a pressure data point to the given parameters.

The sensitivity matrix in our context, also known as the Jacobian, is a compact representation of

the sensitivities of the points in an entire cycle to all six parameters. Since the data sets under

investigation contain both proximal and distal pressure measurements, we augment our Jacobian

matrix to contain sensitivity elements of Paj(t) and Pakd(t) to all six parameters. Let Ak be the

augmented sensitivity matrix of the kth cycle and E be the column scaling matrix with the nominal

parameters values on the diagonal:
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where N represents the number of samples in each of Pad and P•k respectively. Each column of

Ak represents the sensitivity of the entire pressure cycle to one of the parameters. This Jacobian

will be revisited in Section 4.2.

The Hessian matrix, H, also known as the matrix of second order derivatives captures the

sensitivity of 1P to perturbations in Oj. In other words, it measures the effects of changes in

parameter Oj on the pressure sensitivity to parameter Oi. Specifically,

Hk - 2 Pk(t) (3.5)

The Hessian matrix is indicative of the dependency of the output on any two parameters. It becomes

very useful when determining whether the parameters have separable effects on the output. If the

effects are not separable, we say the sensitivity matrix is ill-conditioned, or equivalently, that the

estimation or inverse problem is ill-conditioned.

3.2.3 An ill-conditioned estimation problem

Figure 3-1 shows the normalized sensitivities of proximal and distal pressure to each of the six model

parameters over one cycle.

As can be seen in Figure 3-1, a radial pressure beat is not equally sensitive to all the parameters:

Pkd(t) is orders of magnitude more sensitive to Ra and Qmax, than to Cad or Cap. The latter

observation is one indication of an ill-conditioned sensitivity matrix.

By computing the angle between each pair of sensitivity columns one can test whether two

parameters affect the kth cycle of the pressure waveforms in the same way. If the angle formed

between two column vectors is small, it is difficult to accurately resolve any of the two underlying

AkO = (3.4)
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Figure 3-1: The absolute value of the columns of the sensitivity matrix of a given beat from a) the
radial pressure waveform and b) the central aortic pressure waveform. Each row of the sensitivity
matrix, Ake, is normalized by the appropriate pressure data point value so as to obtain a measure
of elasticity.

Table 3.1: Angles between columns of the sensitivity matrix.

parameters since observed variations in pressure can be attributed to changes in either of the two

parameters. Table 3.1 shows that some parameters have similar effect on radial pressure, Ra and Pv

for example. This method however does not delimit which parameters could be resolved as it only

considers pairs of parameters instead of the projection of all sensitivity columns onto one plane.

Another measure of ill-conditioning is to compute the 2-norm condition number of the Hessian

matrix, the matrix of second order derivatives. Large condition numbers indicate that the Hessian

is quasi-singular and thus the estimation problem is ill-conditioned. The 2-norm condition number

of the model's Hessian matrix for some parameter values characterizing pig #5's steady state is

5.6 x 107, reflecting an ill-conditioned estimation problem.

3.3 Subset Selection

To overcome the ill-conditioned Hessian matrix, I turn to subset selection developed by Velez-Reyes

et al. [17]. Subset selection distinguishes between "weak" parameters and "strong" ones. By "weak"

parameters it is meant that the output is almost insensitive to these parameters in the presence of
the "strong" ones. Once the algorithm selects which parameters could be resolved accurately, the

Qmax L Pv Cad Cap
Ra 10.8 94.2 4.3 95.1 73.9

Qmax 0 91.0 11.6 93.1 83.2
L 0 0 91.8 36.6 85.8
Pv 0 0 0 95.1 71.9
Cad 0 0 0 0 96.6



weak parameters are fixed at nominal values which introduces some bias in the model. However,

the strong parameters can be resolved robustly. The dimensionality of the sensitivity matrix is thus

reduced so as to include only sensitivities to the strong parameters.

3.3.1 Subset selection algorithm

Let m be the total number of parameters in the model. If the Hessian matrix H has only p large

eigenvalues and consequently (m - p) small ones, then the reduced Jacobian matrix Ap should only

include p fairly independent columns. The corresponding Hessian matrix, Hp, will then have a small

condition number, reflecting good conditioning. The following procedures describes the mechanics

of the algorithm [17]:

1. Let 00 be the parameter vector of nominal parameter values. Determine the Hessian matrix,

Ho, corresponding to the sensitivity matrix at the nominal values of the parameters.

2. Compute the SVD decomposition of Ho: Ho = VEVT, such that the diagonal entries of E are

in descending order.

3. By examining the magnitude of eigenvalues in E, determine the number of "strong" parameters,

p.

4. Divide the matrix with the eigenvectors, V such that V = [Vp V,,_p], where Vm,,_p is the null

model constructed from the last m - p columns of V.

5. In order to determine the p strong parameters, compute a permutation matrix P such that,

VT P=Q.R

6. Reorder the parameter vector according to the permutation P: = P 0

7. Divide the ordered parameter vector 6 into two vectors: Op with the first p parameters and

Om-p which will be fixed at nominal values.

0p contains the parameters which we can expect to resolve using least square estimation methods.

3.3.2 Subset selection results

For the modified Windkessel model, the SVD decomposition of Ho results in three relatively large

singular values (3.5 x 106, 0.09 x 106 and 0.04 x 106) and three much smaller singular values (6.5 x 103 ,

4.7 and 6.2 x 10-2). Therefore, it is a reasonable choice to set p to 3.

Applying the resulting permutation matrix leads to an ordered parameter vector as follows: 0 =

[Qmax L Ra Cad Pv Cap] where the first three parameters are to be estimated and the remaining

three to be fixed at values characteristic of the physiological system. Since the blood inertance is



unlikely to vary for a given subject, we reduced our target parameter vector from three parameters

to just two in order to reduce the computational overhead in computing the Jacobian:

0'p = [Qmax Ra] (3.6)

In the following sections, we explore previously-used techniques to approximate the parameters of

the arterial tree in order to set the weak parameters at some good initial guesses.



3.4 The Uncertainty about Arterial Compliance

While the total arterial resistance could be easily obtained from measurements of cardiac output and

pressure as shown in Section 3.6, researchers have been challenged with the estimation of arterial

compliances. The difficulty arises from the complexity of measuring total arterial blood volume

to capture variations in volume for a given variation in pressure. Researchers who took it upon

themselves to study arterial compliance can be classified into two groups: those who assumed a

constant compliance independent of pressure, and those who strived to captured the dependency of

compliance on pressure. The assumption of a constant compliance was backed by the findings of

several studies [32] [33] [38]. However, this assumption was rejected by other researchers. Liu et

al. [44] observed, through their in-vitro experiments that a linear relationship between pressure and

volume only holds for large arteries; narrow and smaller arteries impose a nonlinear P-V relationship.

In this section, we first explain five methods for the estimation of constant compliance. We then

highlight some of the methods which attempt to estimate a pressure-dependent compliance.

3.4.1 Estimation of a constant compliance

Over the last century, numerous estimation schemes have been suggested for the estimation of

constant compliance. However, only five methods are widely accepted. We attempt to give a concise

summary on each of the following methods: the pulse pressure method, the stroke volume-to-aortic

pressure ratio, the diastolic decay method, the area method, and the integral method.

3.4.1.1 The pulse pressure method [34]

The pulse pressure method (PPM) was developed by Stergiopulos et al. [34] to obtain an estimate of

whole-body compliance of the arterial tree. It is based on the original Windkessel model in which the

capacitor represents total arterial compliance. The motivation behind using PPM was to eliminate

the dependency of the estimation schemes on the morphology of the pressure waveforms as they can

exhibit wave reflections which cannot be accounted for with the Windkessel model. Also, contrary

to the diastolic decay method, PPM does not require zero flow in diastole which eliminates the need

to know when systole ends.

This method uses measurements of blood flow and pressure at some site along the arterial tree as

input to an optimization scheme. Based on the Windkessel model, arterial resistance is approximated

as the ratio of mean arterial pressure and mean flow. Compliance is then adjusted according to the

governing equation of the two-element Windkessel model, Eq. 2.4, so that the generated pressure

waveforms by the Windkessel model with measured flow as input fit the measured pressure. The

goodness of fit was determined based on the difference between the pulse pressures of the measured

and generated pressure waveforms. The optimization over Ca was accomplished by simple trial-
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Figure 3-2: Illustrative diagram of the pulse pressure method (PPM), adapted from Stergiopulos et
al. [34].

and-error with the prior knowledge that large compliance values yield small pulse pressures and

vice-versa. Figure 3-2 illustrates the steps of the algorithm.

A variation of the PPM was introduced by Stergiopulos and Segers [35]. They assumed a trian-

gular input flow reconstructed from CO (see Section 2.4) for the Windkessel model instead of the

measured aortic flow. This version of the algorithm only required measurements of the radial artery

pressure from which the aortic pressure waveform was generated using a generalized radial-to-aortic

transfer function.

In his original paper [34], Stergiopulos claimed that the PPM could be used to determine seg-

mental compliance. The latter was supported by a separate study by Segers et al. [36] in which the

PPM was compared against several methods for estimating arterial compliance. They concluded

that the PPM resulted in the most accurate estimates. However, it requires a steady-state flow in

order to approximate arterial resistance as the ratio of mean pressure to mean flow. This assumption

does not usually hold for ICU patients.

3.4.1.2 The stroke volume-to-aortic pulse pressure ratio [40]

The approximation of arterial compliance by the ratio of stroke volume to aortic pulse pressure

was initially suggested by Remington et al. [40]. To approximate compliance by the ratio , one

needs to assume that during systole, blood does not flow to the resistive chambers of the tree. This

simplifies the governing equation of the Windkessel model (Eq. 2.4 of the two-element Windkessel)



as follows:

dP(t)
Q(t) = Ca dt (3.7)

By integrating the above equation over the systolic phase,

to+T 8  to+T dP(t)

Q(t)dt = Ca dt (3.8)

one obtains

SV = Ca(P(to + T,) - P(to)) (3.9)

As in the method discussed in Section 3.4.1.1, this method provides considerable simplicity as it only

requires the magnitude of PP without any dependency on the morphology of the pressure waveform.

The resulting estimate represents the compliance at mean aortic pressure, while other methods,

such as the decay time method, which will be discussed in Section 3.4.1.3, determine compliance at

average diastolic pressure [42]. Thus, it is expected that 5 overestimates the compliance values

obtained using methods such as the decay time method. It follows from this estimate,

MAP MAP MAP -T
Ra - -p . (3.10)

CO SV PP -Ca

and consequently,
MAP T

Ra - Ca =MAP (3.11)
PP

Let r be the time constant of the monoexponential diastolic decay. Then

T PP
r -MAP (3.12)
7 MAP

It is hypothesized that ¥ is relatively constant which maintains the ratio MAP at some constant

value. The latter signifies that the higher the MAP, the larger the deviations from the mean, and

consequently the larger PP is. However, the authors of the stroke volume-to-aortic pulse pressure

method rejected this hypothesis based on their human data set. Researchers warned against using

this approximation as an estimate of compliance as it violates the fundamental concept of the Wind-

kessel model. There is a continuous outflow to the periphery which invalidate the assumption behind

the v method: all ejected blood stretches the large arteries during systole [25] [38]. Nevertheless,

it serves as a reliable index to assess the relative change in arterial compliance.

3.4.1.3 Diastolic contour analysis [47] [52]

The method of contour analysis assumes a certain exponential solution for the model's set of differ-

ential equations which should provide a good fit to the diastolic pressure waveform. The model's



parameters are then estimated from the approximate solution. The complexity of the theoretical

solution is related to the Windkessel-type model order: The higher the order of the model under

investigation, the more parameters that need to be estimated. In this section, we will explore the

use of this method with each of the models discussed in Section 2.

Case 1: Using the two-element Windkessel model, monoexponential fitting. The mo-

noexponential method, also known as the decay time method, exploits the fact that during diastole,

there is no outflow from the left ventricle to the arterial tree. Based on the original Windkessel's

state-space equations during diastole,

dP(t) P(t)dP + = 0 (3.13)dt Ra Ca
Solving for P(t), we obtain the closed form solution for the original Windkessel during diastole:

_ (t-to)
P(t) = P(to) - e RaCa (3.14)

Since resistance is well approximated in steady state by the ratio of mean pressure to mean flow,

then compliance is the only remaining unknown. The robustness of this method was questioned

by Liu et al. [44] as they observed in their experiments that the diastolic aortic pressure does not

follow an exponential decay in patients with hypertension or congestive heart failure. That said,

the performance of such method can be evaluated only during steady state portions in which the

diastolic phase indeed behaves like a decaying exponential function without any perturbations or

artifacts.

Case 2: Using the modified Windkessel model. As mentioned in Section 2.3, the modified

Windkessel model was introduced to better represent the impedance of the arterial tree at high

frequencies. Watt and Burrus resolved to time-domain techniques for model identification [47].

Motivated by the validity of modeling the passive decay of the pressure levels after the closure of the

aortic valve, the authors use this method as an approximation to the diastolic portion of the pressure

waveform. The diastolic contour of the pressure waveform is modeled as of an exponential decay

superimposed on an exponentially-damped oscillation. This representation of the pressure waveform

includes six parameters which need to be estimated from the data. The closed form solution is as

follows:

P(t) = a1e - a2t + a3 e-a4tcos(a5 t - a6 ) (3.15)

Three out of the six fit parameters, a2 , a 4 and a5 , are dependent on the model's parameters. The

remaining three parameters, al, a3 and a6 , are related to the initial conditions of the model's state

variables, Pap(0), Pad(0) and Ii(0). The relationship between model parameters and the ai's is



presented in detail in [27] and [49]. In short,

2a4[(a2 + a4)2 + a5]
Cap = Ra. a2(2a4 + a2)(a + a2) (3.16)

Ra 82 (2a4 ±a 2) (24 5)

Cad = (3.17)
Ra - (a2 + 2a 4)

Ra - (a2 + a4)2

2a4[(a 2  a4)
2  

(3.18)

Under the assumption that Cap is much larger than Cad, the relationships between the parameters

of the fitting function and the model parameters simplify to [47]

a2 - (3.19)
RaCap

1
a4  1 (3.20)

2RaCad

a5  (3.21)

If we were to assume that resistance is estimated as the ratio of mean pressure to cardiac output,

then estimating Cad, Cap and L becomes straightforward.

Although initial results by Goldwyn and Watt seemed promising, this method was subject to

criticism by many researchers: they showed that the resulting estimates of distal compliance are

not representative of the underlying variable. Burattini et al. [53] argued that the resolved distal

compliance estimate using this method is a site dependent parameter which weakens the foundation

of lumping upper body and lower distal compliances into one component.

Case 3: Using the three-element Windkessel model. In Section 2.2, we discussed the

properties of the three-element Windkessel. Its ability to mimic the behavior of the arterial tree

attracted many researchers who attempted to derive algorithms for the estimation of arterial param-

eters. Noordergraaf et al. [52], for example, were able to estimate arterial compliance using Fourier

analysis.

In Section 2.2, we defined Zin as was introduced by Noordergraaf [52]:

R,
Zin = Zc + a (3.22)

1 + jwRaCa

Taking the modulus and rearranging Eq. 3.22, we obtain a closed form equation for compliance Ca:

1 (Ra + Zc) 2 - (Zinl2
Ca = 2 - (3.23)

wRa , Zinl2



Given measured flow and pressure, the aortic impedance spectrum can be derived for all frequencies

and consequently, I Zin becomes accessible. Z, was estimated by averaging the mean of the input

impedance moduli from the 2nd to the 10 th harmonics [55], while Ra was approximated by the

difference between IZin(O)l and the calculated IZ¢I. Eq. 3.23 is then solved for Ca. There are many

limitations to this method. One commonly discussed constraint is that the estimation schemes fails

if Zin is less than or equal to Zc [55]. Also, Shim indicated that the compliance estimates could be

greatly affected by wave reflections [55]. This method was further tested by Stergiopulos et al. [54] in

a comparison study with other methods based on the two-element Windkessel. It was concluded that

compliance was strongly overestimated while the characteristic impedance, Z¢ was underestimated.

This model can generate better fits to pressure waveforms than the two-element methods, however

it does so with inaccurate initial parameter estimates.

3.4.1.4 The area method [44]

The area method (AM) was developed in the mid 80s by Liu et al. [44] as an improvement to two-

element Windkessel-based methods. Many researchers compared the performance of their algorithms

against the area method [38]. The method was also applied to the three-element Windkessel model

[54] as an attempt to refine the resultant pressure waveform fit with a more complex model.

The area method does not rely on an exponential shape of the pressure decay as do other

estimation schemes such as the decay time method. Instead, it relies on the area under the pressure

curve in diastole. Given that the governing equation of the Windkessel model, Eq. 2.4, is a first order

differential equation, integrating both sides of the equation between two time instances in diastole,

tl and t2 , yields an expression in terms of point values P(tl) and P(t 2 ) and the mean pressure over

the interval [tl t 2].

Specifically, the derivation proceeds as follows: integrating Eq. 2.4 yields

Ca dt + - P(t)dt = 0 (3.24)
t 1 dt Ra t2

1 ft2 Areat 2 (25where I P(t)dt = Areat (3.25)
rRa t1  Ra

where the area has units of mmHg.s. To obtain mean pressure over the interval [t1 t 2], we divide the

area by the difference (t2 - tl). When tl is equal to the onset time, to, of the beat under investigation

and t 2 is equal to the time of end of diastole, td, the arterial resistance as defined by the Windkessel

steady-state approximation can be written as Ra = MAP where MAP is

1 td AreatMAP = tO) P(t)dt = otd (3.26)(t - to) to (td - to)



For a constant compliance, independent of pressure, we obtain

Ca t) dt = Ca (P(t 2 ) - P(tl)) (3.27)
dP(t)

By combining Eq. 3.24, Eq. 3.25 and Eq. 3.27, the compliance can be written as a function of the

area under the curve and a pressure difference according to

Area,t2 (3.28)
Ra - (P(t 2) - P(tl))

where tl and t 2 are within the diastolic phase of the beat.

Now let tl = ts, the time at which the dicrotic notch occurs, and t 2 = td, then the total arterial

compliance can then be written as

Areat,td (3.29)
Ca O- tt . (P(ts) - P(td))

Since cardiac output, CO, is equal to (t- , then Eq. 3.29 can be written as

SV Areato,t.30)

Ca = where K = Aret(3.30)
K(P(t,) - P(td)) AreatS,td

K represents the ratio of the area under the entire beat to the area under the diastolic phase.

Segers et al. [25] reported that the constant compliance estimate is very sensitive to how td is

chosen. Studies showed that the best guess for td would be either 28 ms after the dicrotic notch

or the last 2/3 of the diastolic portion of a beat to avoid any reflections occurring at the end of

systole [25], [36] . Shim et al. [55] remarked that the major drawback of the area method is its

reliance on information in diastole, while the interaction between the characteristic impedance and

the compliance is most significant during systole.

3.4.1.5 The integral method [55]

The integral method was developed by Shim et al. [55] as an alternative to the frequency domain

method to estimate the parameters of the three-element Windkessel model. Contrary to all other

methods used for the estimation of compliance in the three-element Windkessel [31] [44], it solely uses

time-domain data. Most methods, originally developed for the estimation of compliance in the two-

element Windkessel, were extended to the three-element Windkessel by estimating the characteristic

impedance Zc in the frequency domain - independently of the compliance - as the average of the

input impedance from the 2 nd to the 10 th harmonic. Compliance was then determined using different

time domain techniques such as the area method or the decay time method among others.

As mentioned above, the integral method is a time domain method. It differs from most of the



published methods for the estimation of Ca in that it relies on information in the early ejection

stage, and does not assume any exponential form for the diastolic portion. The authors justify

this approach by arguing that the interaction between the characteristic impedance, Z, and the

compliance, Ca, is maximized right after the opening of the aortic valve when the reflected flow is

negligible: in all eight dogs under investigation in their studies, the backward waveform accounted

for no more than 1.4% of the measured pressure waveforms within 40 ms from ejection [55]. The

characteristic impedance is obtained by averaging 6 to 8 instantaneous P just after the onset

of the beat. PP(ti) is the difference between pressure level a ti and the end-diastolic pressure.

Consequently,

1= PPQ(ti)

Under steady flow, total arterial resistance shadows the characteristic impedance. Hence, Ra was

approximated as the ratio of mean pressure to mean flow, corrected by Z,:

MAP
Ra = Zin(0) = CO (3.32)

CO

Compliance is then estimated by integrating the governing equation of the three-element Windkessel,

Eq. 2.6 given the above estimates of Z, and Ra. Specifically,

t P(t)dt + RaCa dP(t) dt = (Ra + Z) tQ(t)dt + ZRaCa d(t) dt (3.33)
jdt dt

By rearranging Eq. 3.33, a closed form for arterial compliance is derived.

fCa P(t)dt - (Ra + Zc) ft2 Q(t)dt
Ra(P(tl) - (t2)) - ZcRa(Q(ti) - Q(t 2))

Statistical analysis of the estimated compliances of eight dogs showed that the estimates based

on Eq. 3.34 differ from those obtained by the area method or the decay time method. However,

the intergral method estimates provided the best reconstruction of pressure waveforms for their dog

data set as compared to four other methods: the area method, the diastolic decay method, the input

impedance method, and an iterative nonlinear least squares method by Toorop et al. [46].

3.4.2 Estimation of a pressure-dependent compliance

The methods mentioned above assume that the arterial pressure-volume relationship is linear which

makes the total arterial compliance of the system a constant independent of the pressure level.

However, many studies concluded that the arterial pressure-volume relations of arterial segments

are nonlinear [40], [41]. Otto Frank, for example, observed that using pressure-dependent compliance

is one way to generalize his model [37]. It is argued in the literature that the estimated constant



compliance values are reasonably close to those calculated from a non-linear P-V relation at normal

mean arterial pressure [38], [44]. Hence, the characterization of the pressure-volume relation is a

key element in refining compliance estimates for all levels of pressure especially since, quite often,

pressure waveforms exhibit high variability.

Langewouters' compliance: The most widely used form of pressure-dependent compliance is

the one derived by Langewouters et al. [39]. It models the arterial pressure-volume curve as an

arctangent. It has been used in many complex models of the cardiovascular system to characterize

segmental compliance in different compartments [36]. Wesseling has incorporated Langewouter's

compliance in his model-based scheme for the estimation of cardiac output [51]. Its functional form

is

C(k) 0(3.35)
a2 + a3(MAPk - p*)2

where Cak) is the arterial compliance and MAPk is the mean arterial pressure both for beat k. P*

represents the inflection point from the P-V relationship and is usually set at 40 mmHg. Parameters

al, a 2 and a 3 are patient-specific constants which can be determined from population studies [51].

Parlikar's linear compliance: Recently, Parlikar et al. [19] suggested a simple variation of the

Langewouter's pressure-dependent compliance. They assumed a parabolic P-V relationship which

yields a dynamic compliance as follows:

Cak) 1= l + 32MAPk (3.36)

where 01 and 22 are constants which need to be estimated. Based on their study [19], a pressure-

dependent compliance improved the performance of their CO estimation scheme.

Liu's compliance based on the AM: Liu et al. [44] used the area method to estimate a

pressure-dependent compliance for preset nonlinear pressure-volume relationship [44]. Substituting

Eq. 3.25 in Eq. 3.24 gives a general form for the averaged two-element Windkessel:

a(P) dt + Area, 2 = 0 (3.37)
t dt Ra

In Section 2.3, compliance was defined such that Ca(P) = dV(P) By combining Eq. 2.3 and Eq.

3.37, we obtain

P dV(P) + Area = (3.38)
P(t ) Ra



Since Ra = M and CO = (td - to) -SV, then

Areato,td
Ra = SV (3.39)SV

By substituting Eq. 3.39 in Eq. 3.38,

SV
V(P(ts)) - V(P(td)) = K (3.40)

Depending on the assumed relationship between pressure and volume, one could estimate Ca after

estimating all the parameters in the volume expression as a function of pressure, V(P(t)).

Liu et al. explored three functional forms to characterize the arterial P-V relationship: expo-

nential, logarithmic, and parabolic. For an exponential P-V curve, volume is related to pressure as

follows:

V(t) = aebP(t) (3.41)

where a and b are to determined experimentally. Substituting the above equation in Eq. 3.40 results

in a pressure-dependent compliance given by

sv bebP(t)

Ca - ebP(t) - ebP(td)(3.42)

For a logarithmic relationship, the dynamic compliance would be

sv
Ca = K (3.43)

In• P(ts)

Finally, for a parabolic relationship, the resulting compliance is similar to Eq. 3.36 proposed by

Parlikar et al. [19]. The exponential relationship was found to be the best function as it has

only one parameter independent of measurement's site, b, to be estimated by linear least-squares

techniques [44]: once an estimate of b is available, the compliance estimate becomes dependent on

pressure waveform characteristics and stroke volume. The parabolic function performed well on

waveforms with pressures below 100 mmHg however it resulted in very poor fits for higher pressures.

On the other hand, the logarithmic function behaved in the opposite way: it provides much better

fits for high pressure levels.

3.5 Approximation of Blood Inertance

In the previous section, we discussed methods for estimating arterial compliance. These methods

have been tested extensively in the literature. While many methods are applicable to the modified

Windkessel model, the decay method as developed by Watt and Burrus [47] is the only method



which attempts to estimate the blood inertance parameter in the modified Windkessel model. The

remaining methods rely on the derivation of inertance from the geometry of the vessels as described

in Section 1.2.1. The accuracy of blood inertance estimates have not been given much attention as

it has been argued that variations in L cannot be observed on a beat-to-beat basis, and it is also

hypothesized that blood density and the length of vessels are fairly constant. Stergiopulos et al. [45]

evaluated segmental blood inertance in a distributed model of the arterial tree as follows:

Li j c-dx. (3.44)

where Li is the blood inertance in vessel i, Ai is the cross sectional area, p is the blood density, and

c, is the velocity profile coefficient [45]. We did not attempt to estimate L in our CO estimation

scheme, something we explained earlier in this chapter.

3.6 Previous Estimation Methods of Resistance

As presented in Section 1.2.1, Ra in Windkessel-type models is approximated in practice using Ohm's

law [8] [34] [35] [45] [47] [50] [51] [55]. While Poisseuille's law highlights the dependence of arterial

resistance on the geometry of the vessels, resistance as defined in Windkessel-type can be estimated

solely from steady state data where compliance and inertance have no effect. Under Ohm's law,

resistance is equal to the ratio of mean arterial pressure to mean flow.

Under transient behavior, Toorop et al. [46] accounted for the compliance effects in the three-

element Windkessel by subtracting from mean flow the blood flow which is held by the arterial

compliance. Specifically,
MAPk

Rtransient = COk - (3.45)
COk _ __ (3.45)Tk

Parlikar et al. [19] relied on beat-to-beat least squares estimates of the time constant Tk of the

Windkessel model (Tk = R()C(k)) and estimates of compliance according to Eq. 3.36 to obtain a

beat-to-beat estimate of Ra in the simple Windkessel model.

3.7 Concluding Remarks

In this chapter, we analyzed the parameter space of the modified Windkessel model in order to better

understand the inverse problem which is explained in detail in the next chapter. Using the subset

selection algorithm, we determined that we can reliably estimate two of the modified Windkessel

model parameters, Ra and Qmax. A review of previously developed methods for the estimation of

arterial compliance and blood inertance in Windkessel-type models was also presented.

In the following chapter, the inverse or estimation problem for cardiac output and arterial re-



sistance will be discussed, and a scheme for fixing the other parameters in the modified Windkessel

model will presented.





Chapter 4

Beat-by-beat Parameter

Estimation

In Chapter 2, we introduced the modified Windkessel model as a faithful representation of the arterial

tree. In Chapter 3, we further expanded the mathematical framework of the modified Windkessel

model by exploring the model's parameter space and its effect on the pressure waveforms. We

also presented a literature review of previous methods for the estimation of three key physiologic

parameters: the arterial compliance, peripheral resistance, and blood inertance.

In this chapter, we analyze the inverse problem for the estimation of cardiac output. We will

discuss our approach to estimate cardiac output and arterial resistance reliably from pressure wave-

forms using a nonlinear least squares (NLLS) routine. To do so, we first highlight the nonlinearity

of the model in the parameters under investigation, Ra and Qmax. We then discuss key concepts of

NLLS optimization techniques before concluding with our beat-by-beat estimation scheme.

4.1 Nonlinear Dependence of Blood Pressure on Ra and Qmax

In Section 3.3, the application of the subset selection algorithm developed by Velez-Reyes et al.

[17] resulted in a reduced parameter vector comprising the total arterial resistance, Ra, and the

maximum blood outflow of the left ventricle when modeled as a parabola, Qmax. According to our

parameter space analysis in Chapter 3, the sensitivity column vectors corresponding to Ra and Qmax

are almost collinear: the angle formed by the two vectors is around 100. The absence of orthogonality

between the two sensitivity vectors suggests that it would be hard to separate the effect of Ra on

pressure from that of Qmax. However, subset selection suggests that a NLLS approach would be

able to accurately estimate Qmax, L, and Ra.

In Chapter 2, we concluded that blood outflow of the left ventricle is best modeled as a parabolic



pulse train of variable periodicity. Specifically,

Q(t) = (a(t - tk ) 2 + b(t- tk)) (u(t - tk) - u(t - (tk Ts)) (4.1)

where
- 6 - SVk 6 SVk

a = b = (4.2)T 3  b 2

Under the above assumption, the interaction between Qmax and Ra could be explicitly seen in the

steady state equation of the modified Windkessel model:

MAPk MAPk
Ra C (4.3)maxCOk - k max

where Ak = Tk

It can be inferred from Eq. 4.3 that an increase in mean pressure could be due to either an increase

in arterial resistance for a constant flow or an increase in cardiac output for constant resistance.

Based on the state space representation of the model in Eq. 2.10, the pressure waveforms are

nonlinearly dependent on Ra and Qmax. Substituting Eq. 2.7 in Eq. 2.9 results in the Kirchhoff

current law equation at the supernode consisting of the inductor:

dPap (t) dPad (t) Pad _ )
Q(t) = Cap dPp(t) Cad +  (4.4)

dt dt Ra

If we express Pap(t) in terms of Pad(t) and its derivatives and we model blood flow as a parabolic

function in systole, then Eq. 4.4 can be written as

d 3 P a d( t  2pad(t) dPad( )L dCpdadt) + LC dtPad(t) + Ra(Cad + Cad)d - + Pad(t) =
RaLCadap dt3  ap dt2 dt

RaQmax -2 (u(t) - u(t - Ts)) (4.5)

The above differential equation is nonlinear in the parameters. Hence, estimates of the parameters

Ra and Qmax could only be resolved using NLLS optimization methods. Most well established

methods are based on the Gauss-Newton approximation which is presented in Section 4.2.2.

4.1.1 Problem statement

The objective of our project is to estimate cardiac output and arterial resistance from arterial

pressure waveforms. We aim to extract as much information as possible from measured proximal

and distal pressure waveforms to approximate cardiac output. In an ICU setting, femoral or radial

pressures are routinely recorded to monitor a patient's hemodynamic state. For the porcine data set

used in Chapter 5, waveforms of both central aortic pressure and femoral artery pressure are used



in the inverse problem to estimate model's parameters. That is,

PmeasuredT [Pap(t) . . . Pap(tN) Pad(tl) - . Pad (tN)] (4.6)

where N is the number of data points in the kth cycle in each of the pressure waveforms, Pad (t)

and Pap(t). We defined 8 as the parameter vector of the modified Windkessel model. We wish to

find the set of parameters which leads to best fits of the measured waveforms. Assuming we have

good guesses for Cad, Cap, and L, we aim to obtain beat-by-beat estimates of the optimal arterial

resistance, Ra and maximum blood flow, Qmax, by comparing the output pressure waveforms of the

modified Windkessel model to Pmeasured. By estimating these two parameters, we obtain a reliable

estimate of CO in two different ways. Cardiac output's relation to Ra could be determined from the

model's steady state equation:
MAPk

COk= MAP (4.7)
Ra

Its relation to Qmax could be obtained from the parabolic flow equation:

2 - T
COk = -. Qmax where 0 = - (4.8)

4.2 Nonlinear Least Squares Optimization Over One Cardiac

Cycle

In this section, we will derive the parameter update equation resulting from NLLS optimization

for pressure waveforms in an individual cardiac cycle. We will account for column-scaled Jacobian

matrices and weighted residual vectors in the derivation below. Although the method of least-

squares is one of the most commonly used estimation techniques, there are many tuning aspects

to the nonlinear version of the algorithm. First, we will explain the theory behind least-squares

followed by the derivation of the Gauss-Newton NLLS optimization. Subsequently, we will introduce

a particular regularization technique known as the Levenberg-Marquardt algorithm.

4.2.1 Cost functions

Typically in estimation algorithms, the cost function to be minimized is a function of the estimation

error, the difference between the model's output and the measured data. Least-squares solutions are

obtained by minimizing, sometimes a weighted version of, the sum of squares of the prediction error.

Let r(6) be the prediction error between the model's pressure waveforms and the measured data,

specifically, r(d) = Pmeasured - P(6, t). Note that P(6, t) is the column-vector containing samples

of model-generated proximal and distal pressures for some 0. The cost function to be minimized



can be written in terms of r as follows:

4(0) = rT Wr (4.9)

where W is a diagonal matrix of weights. The least squares solution, OLS, can then be expressed as

follows:
2N

OLS = arg min Zwirr() (4.10)
i=1

where wi represents the weight associated with the squared error at the ith data point of P(O, t).

The weight factor wi is usually associated with the uncertainty about data point i. It plays an

important role in the estimation algorithm as it allows the more reliable data points to be used

preferentially in determining the estimates of the parameters. Statistical weighting, for example,

uses the inverse of the variance of data point i of P(O, t) as the weight:

w 1 2 (4.11)

In cases in which we cannot assess the uncertainty about the prediction error of the ith data point,

we simply assume the uncertainty about all points to be the same. This leads to unit weighting i.e.

wi = 1.

If we were to determine the uncertainty for our data set, one possible scheme to compute variances

is to stack all steady state beats and to derive distributions around each data point (normalized

histograms). We could also benefit from prior belief about the model's ability to represent the data:

if we believe our model captures the systolic dynamics better than the diastolic ones, then we could

assume higher prediction variance in diastole leading to smaller weights for the diastolic portion of

the cardiac cycle.

4.2.2 Gauss-Newton nonlinear least squares optimization

The NLLS estimation scheme attempts to find the effect of a normalized perturbation, A%O, around

00 on the pressure waveforms. The derivation of the scheme proceeds as follows:

AP= [A] .A% = r(O) (4.12)

where A%O = - 1 A = -(0 1 - 00). In Section 3.2.2, we defined the matrix of the first derivatives,

A, as the Jacobian matrix which we scaled by E, the column-scaling matrix of nominal parameter

values. We also defined the matrix of second derivatives, H, as the Hessian matrix. The inverse

model aims to determine the values of the parameters in 0 for a given pressure waveform. In the

previous section, we saw that the least-squares solution does this by minimizing the weighted sum



of squares of the prediction errors, as shown in Eq. 4.10.

Deriving the least squares solution: Let 80 be the vector of initial guesses of the parameters

and 81 be an estimate of the parameter vector. Given our initial guess, 80, we could approximate

the cost function in Eq. 4.10 by its Taylor approximation around 80:

(0) = (Oo) + 0 A%0 + AOT [24] A%0 (4.13)

We then aim to minimize 4(0) with respect to A%O. To do so, we differentiate the objective function

with respect to A%O and set it to zero. The latter leads to the following equation:

[a]4] + [ ]2 AO = 0 (4.14)

Rearranging Eq. 4.14 under the assumption that the Hessian matrix, H = [02 /902 ] o, is non-

singular, yields the following least squares solution:

A%=-[o•2 1 (4.15)

The matrix of first-order derivatives in Eq. 4.15 relates the sensitivity matrix to the parameter

vector 0 as follows:

['9] =(v/WAe)TV/Wr(O) (4.16)
40 o 0o

The Gauss-Newton approximation of the Hessian matrix: The matrix of second-order

derivatives in Eq. 4.15 can be obtained by differentiating Eq. 4.16 with respect to 0. Using the

chain rule, the (i, j)th entry of [092 /O4Gi0jeo can be written as

a2T
Hi - =i - (OATWAO)i + g(W, r, 6) (4.17)

Where g(W, r, 6) is a function of the second derivative of the residuals with respect to the ith and

jth parameters. The Gauss-Newton approximation ignores g(W, r, 0) as it is negligible for small

residuals. This leads to an approximation of the Hessian given by:

H EOATWAO (VWAE)T( WAE) (4.18)

The NLLS parameter update equation: If we apply the Gauss-Newton approximation of the

Hessian matrix, Eq. 4.15 can be rewritten:

A%O = -[(WAe) T"( -WAEO)]-' (VWAE) T Wr(O) (4.19)



When the dependent variable, P(O, t), is a linear function of the parameters, 01 = OLS , unless

the Hessian matrix is ill-conditioned. However, when P(O, t) is nonlinear in the parameters, an

iterative process is required. As was indicated in Section 4.1, the modified Windkessel model is

nonlinear in the two strong parameters, and thus the NLLS solution must be obtained.

The Gauss-Newton approximation also transforms the NLLS estimation problem into a series of

linear least squares estimation problems. At each iteration, a parameter update vector is generated

by minimizing the cost function described above. The NLLS update equation at the end of iteration

i is the following:

i+1 -= - o[(vWAe)T (v/-WAe)]-'(v/Ae)TV Wr(Oi )  (4.20)

Parameter vector 0i+1 is considered an improved estimate of 0 if it yields a better fit to the data, in

other words, if 4(0i+1) < (O9i). Note that if A is a full-rank matrix, then W is a positive definite

symmetric matrix representing the weight matrix, and the iterative scheme converges to OLs

Tikhonov regularization: There are many efficient NLLS algorithms which involve regulariza-

tion techniques to overcome ill-conditioned Hessian matrices which are characterized by a large

condition number, the ratio of its largest singular value of a matrix to its smallest. The most com-

monly used method is the Tikhonov regularization which constrains the magnitude of the term,

II A%01. The optimization problem thus becomes

OLS = arg min (4(0) + 62LA%012) (4.21)

where e2 is called the Tikhonov factor, a damping variable to suppress small eigenvalues of the H.

By reducing the condition number of H, the least squares solution becomes more stable, i.e., the

Hessian matrix is no longer quasi-singular. This constrained optimization problem in Eq. 4.21 has

an explicit solution:

A%O = [(vWAe)oT(VWAO) + E2I]- 1 (ViWAE)TVWTr(O) (4.22)

The Tikhonov factor can be set arbitrarily. However, if it is too large, it makes the iterative

NLLS process extremely slow as the update vector, 0i+1, satisfying the cost function in Eq. 4.21 is

dominated by the large term, e211A%0112. Numerous schemes have been developed to dynamically

adjust e2 so that the conditioning of the Hessian is improved with minimal computational over-

head. In the following section, we will explore the Levenberg-Marquardt algorithm for adjusting the

Tikhonov factor.



4.2.3 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm is a systematic method for adjusting the damping factor,

E2, depending on how (80i+1) compares to ((Oi). The LM algorithm provides a solution to Eq.

4.21 by behaving like a gradient-descent algorithm for large C2 , or like the Gauss-Newton algorithm,

derived in Section 4.2.2, for small c2. On one hand, a large c2 requires that the magnitude of

parameter updates to be small in order to satisfy the minimization problem. This yields small

increments at each step in the iterative NLLS scheme. On the other hand, when E2 is small, 8 is

mainly influenced by the magnitude of ((0), which leads to the Gauss-Newton NLLS solution.

The intuition behind the LM algorithm is that when the prediction error is large, the solution

at the current iteration is distant from the optimal one, and hence, a gradient-descent approach

would broadly guide the iterative process towards the solution. However, when the prediction error

becomes relatively small, the LM algorithm decreases the regularization factor to take advantage of

the computational efficiency of the Gauss-Newton algorithm.

The LM algorithm has three degrees of freedom: the initial value of the damping factor, E2, a

divisor, y, which is used to scale down E2 when moving towards the optimal solution, and a multiplier,

a, which scales up E2 when moving away from the optimum. The multiplier has to be smaller than

the divisor so that the more iterations we do, the closer the solution will get to the correct solution.

Those two tuning parameters allow the LM algorithm to dynamically adjust its behavior between a

typical gradient-descent algorithm and the Gauss-Newton algorithm.

In order to assess whether we are getting closer to the optimal solution at the end of the ith

iteration, We use the root mean squared error, RMSEi, which will be discussed in more detail in

Section 4.2.4, instead of D(8). If RMSEi+ 1 is less than RMSEi, then the parameter estimates are

closer to the optimal solution along the error curve, and consequently, a smaller damping factor e2 is

needed at the next iteration: q+1 = E/7, where y > 1. If however, RMSEi+1 is larger than RMSEi,

the new estimates is further away from the correct solution which necessitates a larger damping at

the next iteration: 2E+1 = a -E?, where a > 1.

4.2.4 Goodness-of-fit

Goodness-of-fit determines how well a mathematical model matches the underlying data. There are

several metrics which could be used to quantify the discrepancies between two waveforms. In our

scheme, we use the root mean squared error (RMSE) as the similarity metric between the resulting

pressure waveforms for a given set of parameters, 0 and the measured Pad(t) and Pap(t).

RMSE(0) = rTWr (4.23)S2N



where 2N is the number of samples used to assess the fit. Intuitively, the error at each sample

is about RMSE mmHg on average. If W is the weighting matrix discussed previously, then this

metric is called root mean squared relative error as the error at each data point is weighed by the

inverse of the uncertainty about that point [56]. These metrics are used in the estimation scheme as

part of the Levenberg-Marquardt algorithm, i.e., the RMSE between a model's pressure waveforms

and measured pressure waveforms dictates whether the damping factor should be larger or smaller

during the next iteration.
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4.3 Continuous Beat-by-Beat Estimation

So far, we discussed the mathematical framework of the parameter estimation scheme over one cycle

which is summarized in Figure 4-1. Our goal is to obtain beat-by-beat estimates of arterial resistance

and cardiac output from pressure waveforms. We first need to detect the onset of each cardiac cycle

so we can apply the estimation algorithm. There are some major challenges in developing our

estimation scheme: the choice of initial conditions for the state variables, the nominal values of the

"weak" parameters and the initial guess of the parameters in 0. In this section we highlight the

solution to each challenge before we summarize the details of the beat-by-beat estimation algorithm.

4.3.1 Setting the initial conditions of state space variables

The choice of initial guesses of state variables plays an important role in the convergence and the

efficiency of the algorithm. In Eq. 2.10, we described the modified Windkessel model using three

state variables: Pap(t), Pad(t), and II(t). Given that the Jacobian is derived using a two-sided finite

difference approximation, it is crucial to choose good initial guesses for the state variables so that

the number of simulated cycles can be kept at a minimum.

Specifically, for each cycle k, let PEp(t) and Pad(t) be the measured pressure waveforms at the

aorta and the femoral artery respectively. Then, the guesses for initial conditions of Pap(t) and

Pad(t) would be Pk(to) and PFd(to) respectively. The initial current through the inductor, Ilk(to),

can be approximated by rearranging the first equation from the state space model in Eq. 2.10 at

t = to:
dPI(to)

I (tO) = Cap dt + Q(to) (4.24)

Since the flow Q(t) is modeled as a parabola in systole and is zero at t = to, Ik(to) is equal to

Cap dt As long as the measured pressure waveforms are not too noisy, a good guess of I1 (0)

can be obtained as the product of Cap by the slope at t = to of the pressure waveform. Figure 4-2

illustrates how the values of the initial conditions are determined from measured pressure waveforms.

4.3.2 Setting Cap~ Cad and L

We initially characterized the MWK model with four passive components and two sources, a total

of six parameters. Subsequently, subset selection allowed us to reduce the parameter vector to

one consisting of Ra and Qmax. The remaining parameters need to be set at some nominal values

which allow good fits to the pressure waveforms. In Section 3.4, we described previous methods for

estimating arterial compliance in Windkessel-type models. We could be tempted to implement any

of the methods to determine the nominal values of Cad and Cap. However, almost all the methods
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Figure 4-2: Setting the initial conditions for the state variables of the model.

assume blood flow as a given variable, defeating our estimation goal. Therefore, we explored two

possible schemes which only require one measurement or estimate of cardiac output.

Grid search over Cap, Cad, and L: The simplest scheme consists of implementing a grid search

over physiological ranges inferred from in vivo studies of the three variables, Cap, Cad, and L. Given

that blood inertance variations are much slower than variations in arterial compliance, we perform a

coarse search over the range of L and a fine search over the ranges of Cap and Cad. Having measured

or estimated cardiac output over the first beat, Ra, and Qmax are then accurately set as described

earlier. Hence, for every combination [Cap(i) ; Cad(i) ; L(i)], the RMSE between the generated

pressure cycle and the initial measured beat is used to determine the goodness-of-fit. The set of

weak parameters which yields the smallest RMSE is then chosen to be the nominal values for the

arterial compliances and the blood inertance.

Figure 4-3 shows one possible implementation of the grid search over four different values of L

and 40 values for each of the compliances, 4 x 402 different combinations. This figure uses data from

one of the pigs in the porcine data set described in the next chapter.

Linear least squares approach: An alternative approach to setting Cap, Cad, and L using a

grid search is to exploit the information in the proximal and distal pressure waveforms through the

input-output equation of the model. We previously derived the input-output relation for our model

"^
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Figure 4-3: Grid search over the weak parameters for Pig #5.

to obtain the following equation:

dPap (t) dPad(t) Pad(t) = Q
Cap +Cd + = -(t)dt dt Ra

Integrating Eq. 4.25 between tl and t 2 yields the following equation:

Cap (Pap(t 2) - Pap(tl)) + Cad (Pad(t 2 )- Pad(tl)) + ~ 2 Pad(t)dt - Q(t)dt

(4.25)

(4.26)

We can rewrite an intra-beat version of Eq. 4.26, under the assumption of a parabolic pulse train

as blood flow, by integrating between two intra-beat time instances, tl and t 2, as follows:

Cap (Pap(t 2) - Pap(t)) + ad (P(t 2) - Pad ) Ra

min(t 2 , T)3 + min(t2, 2 - min(tl ,TS)3 + min(ti, T 2) (4.27)

where < Pad(t) >t2 denotes the average of Pad on the interval [t1 ; t 2 . This equation is linear in Cap,

Cad, and 1-. Hence, if we pick a few (ti, tj) pairs within the first beat, 0 < ti, tj < T1 , we can set

Lz



up a linear least-squares (LS) problem over samples from the first measured beat:

Pap(t) - Pap (ti) Pad(tj) Pad(t) (t - t) < Pad(t) >t

Pap(tj i) - Pap(ti) Pad(tj,) - Pad(ti) (tjn - tin) < Pad(t) >t

Pa(tjz) - Pap(tiz) Pad(tjz) Pad(tiz) (tj.i - tJ) < Pad(t) >:

Cap

Cad

1
Ra

( mmin(ti, T,) 3 +* min(tjl,Ts,)2) (2 min(t1 i,T 3 T + b min(til,Ts)2)

( min(t, Ts) 3 + b in(tinTs)2 min(ti,,Ts) 3 + min(tin, Ts)2

( . min(t+ min Ts)2) ( min(ti, ,T) 3 . min(tiz,T,)2

(4.28)

The choice of (ti, tj) pairs has great impact on the accuracy of the parameter estimates. If the row

vector corresponding to the nth pair is a multiple of the row vector corresponding to the mth pair

with different right hand terms, then the LS estimates become ill-conditioned. Thus, it is important

to select a set of pairs which minimizes the condition number of the sensitivity matrix.

By setting the weak parameters Cap, Cad, and L at some nominal values, we introduce bias in

the model and thus estimates of Ra and Qmax are influenced by how close the weak parameters are

to the optimal values: Cap, Cad, and L*. We will next highlight the importance of the initial guesses

for Ra and Qmax.

4.3.3 Initial guesses of Ra and Qmax

We showed in Section 4.2.2 that the NLLS solution is attained through a sequence of parameter

updates. The starting value for each parameter plays an important role in guaranteeing convergence
-k-1

of the algorithm. For each cycle k, we use the NLLS estimate from the previous cycle, 0p , as the

initial guess for the reduced parameter vector Op. Specifically,

Rk;i=O k- and Q;iO = k- (4.29)

where i stands for iteration number and k indicates the beat number. This setup requires prior

knowledge of the arterial resistance, R k = ,i=o, and maximum flow, max;i=o , at the first beat. Since

we use a measurement or estimate of CO from the first beat to determine nominal values for the weak

parameters, we could infer R = l
,
i=o from the steady state equation of the modified Windkessel model

in the first beat: R = 1 = MAP. An initial guess of maximum flow, Qk=m;i=o, is determined using
in he irs bet: • = • Co1



the analytical expression of blood flow when modeled as a parabolic pulse train: Qk = 1CO1.

4.3.4 Summary diagram

The overall behavior of our beat-by-beat estimation algorithm can be summarized in the following

steps:

1. Detect the onset of each cycle in measured Pap(t) and Pad(t).

2. Construct Pmeasured as defined in Eq. 4.6 and extract cycle characteristics such as mean arterial

pressure, MAPk, and the beat duration, Tk.

3. Determine the initial conditions for Pap (t), aad(tO), and II(to).

4. Optimize using a grid search for the weak parameters L, Cap, and Cad to reduce the estimation

bias.

5. Run the NLLS on each cycle sequentially to estimate Ra and Qmax in each cycle. Set OP to

the parameter vector with the smallest RMSE for each cycle.
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Figure 4-4: Beat-by-beat parameter estimation algorithm. Inputs FAP and CAP stand for fABP
and cABP respectively.

4.4 Concluding Remarks

In this chapter, we described in detail our estimation scheme. We applied standard NLLS estimation

techniques by taking advantage of all the degrees of freedom of the Levenberg-Marquardt algorithm,

the weighted residuals, and the scaled Jacobian. We then highlighted the mechanics of a beat-by-

beat estimation algorithm which is intended to be integrated in ICU monitoring systems. In the

following chapter, we apply our estimation scheme to data recorded from four pigs. We validate the

estimates of cardiac output and arterial resistance by comparing them to the true CO derived from

measured blood flow, Q(t).

T'I"



Chapter 5

Results

We validated our beat-to-beat estimation algorithm described in Chapter 4 on a porcine data set

collected at MIT in a study by Professor Mukkamala of Michigan State University [12]. High

resolution pressure and blood flow waveforms as well as electrocardiogram recordings of six Yorkshire

swine (30 - 34kg) were recorded for each animal. A micromanometer-tipped catheter was used to

measure central aortic pressure and an external pressure transducer was placed to monitor femoral

artery pressure. Reference cardiac output, which we refer to as true CO although it contains some

measurement noise, was obtained using a flow probe placed around the aortic root. This data set

has been extensively scrutinized by Parlikar et al. [19] and Mukkamala et al. [12] for CO estimation.

The following cardiovascular variables were recorded for all six swine:

1. Pressure waveforms: central aortic pressure (cABP), femoral artery pressure (fABP), radial

artery pressure (rABP).

2. Heart rate (HR), from electrocardiography recordings (ECG) or from pressure waveforms.

3. Blood flow, Q(t).

4. Time stamps for the IV medication infusions, such as esmolol, phenylephrine, nitroglycerine,

and dobutamine.

5.1 Description of the Porcine Data

The experiments by Professor Mukkamala aimed to identify the effects of numerous drugs such as

dobutamine, nitroglycerine, esmolol, and phenylephrine on CO, HR, and ABP [12]. The porcine

data set contains hemodynamic states spanning a wide dynamic range. Figure 5-1 shows some of

the recordings corresponding to Pig #6. We see that the administered drugs lead to high variability

in cardiac output, heart rate and mean arterial pressure. For instance, dobutamine, which is known



Hemodynamic variables of Pig #6 under various interventions.
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Figure 5-1: Typical recordings from the study by Dr. Mukkamala et al. [12]. These waveforms
correspond to Pig #6. Note that we show mean arterial pressure of central aortic pressure and
femoral artery pressure rather than the measured waveforms.

for its effect on cardiac output and contractility, leads to an increase in cardiac output minutes after

its injection at t = 73 min. Once it was turned off 7 minutes later, cardiac output decreases. The

injection of nitroglycerine at t = 34 min caused the blood pressure to drastically decrease and heart

rate to increase slightly without affecting cardiac output. Esmolol which is used in clinical settings

to prevent tachycardia, was administered at t = 88 min and caused the heart rate to decrease. The

effect of phenylephrine, which was administered with different levels throughout the recording time,

is greatest at t = 58 min: blood pressure increased with the higher level of phenylephrine. Also, at

t = 20 min, a reduction in the level of phenylephrine lead to a significant decrease in mean blood

pressure.

5.2 One-Cycle Fitting

In Chapter 2, the modified Windkessel model was shown to be a valid model of the arterial tree, from

the left ventricle to a distal artery. In Chapter 4, we described a grid search over physiological ranges

for Cad, Cap, and L to reduce the bias resulting from fixing the weak parameters so as to obtain

best fits to the measured data for a given CO. We further discussed an iterative NLLS estimation



algorithm to compute beat-by-beat estimates for Ra and Qmax for some fixed values of Cad, Cap,

and L.

Figure 5-2 shows how the estimation algorithm generates well-behaved pressure cycles that match

the measured data. The algorithm in this case minimizes the RMSE over a certain number of

iterations to obtain parameter estimates for one cycle. The underlying parameters of the modeled

waveforms corresponding to the smallest RMSE are considered to be good estimates of the true

values of arterial resistance and maximum flow for the kth cycle, and are then used to compute

cardiac output in the kth cycle, COk.

I

Sampls (0 250Hz)

(a)

Figure 5-2: Fits to the 1 1 th pressure cycle from pig #6 after 8 iterations: a) central aortic pressure
b) femoral artery pressure.

5.3 Continuous Monitoring of Four Pigs

Although the data set contains recordings of six pigs, we apply our estimation algorithm only to

four pigs as pig #4 and pig #7 have noisy central pressure waveforms. The resulting CO estimates

were evaluated using a normalized version of the root mean squared error. The root-mean-squared-

normalized-error, RMSNE, as suggested by its name, normalizes the cardiac output prediction errors

by the true value so as to obtain a unitless measure of prediction error. For a given pig, the RMSNE

is as follows:

1 N (o CO(i) _ CO(i) 2
RMSNE = 100 x _st 1- ru_) (5.1)e

where Nco is the number of cardiac output measurements for a given pig. In Table 5.1, we report the

resulting RMSNE for all four pigs in two forms: RMSNEunfiltered represents the overall root mean

squared normalized error between the raw CO estimates and the true CO. RMSNEfiltered takes into

account the smoothing of CO estimates using a median filter of width 40 beats. We also show the

RMSNE as reported by Parlikar et al. [19] and the number of beats used in their estimation scheme.



Pig # Number of beats RMSNEunfiltered RMSNEfiltered Number of beats RMSNEparnikar
5 13234 12.1% 9.8% 14404 10.8%
6 11538 19.2% 18.6% 12088 9.4 %
8 13020 12.2% 11.1% 14113 12.6%
9 7717 19.6% 18.6% 9370 19.6%

Table 5.1: Estimation algorithm performance evaluation and comparison with the results by Parlikar
et al. [19] using RMSNE for the four pigs.

As can be seen in Table 5.1, the RMSNE can be as low as 9.8% and as high as 19.6%, as seen in

pig #9. To justify the wide range of RMSNE, we looked at the the intra-beat dynamics in pig #9

and pig #5. The difference in estimation precision can be attributed to the reflections observed in

the proximal pressure waveform of pig #9 during systole. In our estimation algorithm, we align the

peaks of the pressure cycle generated by the modified Windkessel model and that of the measured

cycle. For beats with type A reflections, there are two local maxima in systole which could cause

the misalignment of the beats and ultimately affects the quality of the Ra and Qmax estimates.

Although the RMSNE provides us with an overall measure of the algorithm's performance, it is

important to examine the reliability of the algorithm under various hemodynamic conditions. Figures

5-3, 5-4, 5-5, and 5-6 show CO, Ra, MAP and HR as a function of time. Note that throughout the

experiments, the pigs were infused with drugs to cause the observed dynamics.
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Figure 5-3: Pig #5 cardiac output and arterial resistance estimates as a function of time. The
goodness-of-fit of the pressure waveforms is reported in the bottom window.
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Figure 5-4: Pig #6 cardiac output and arterial resistance estimates as a function of time. The
goodness-of-fit of the pressure waveforms is reported in the bottom window.
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Figure 5-5: Pig #8 cardiac output and arterial resistance estimates as a function of time. The
goodness-of-fit of the pressure waveforms is reported in the bottom window.
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Figure 5-6: Pig #9 cardiac output and arterial resistance estimates as a function of time. The
goodness-of-fit of the pressure waveforms is reported in the bottom window.



Remarks: We previously explained the lower precision in the cardiac output estimates for pig

#9 as opposed to that for pig #5, attributing the imprecise estimates to the reflections observed

in the central aortic pressure waveform. This hypothesis however is not the only justification for

the high RMSNE. By looking at Figure 5-6, one can see that the CO estimates after t = 15 min

are very close to the true values, however, during the first 15 minutes, the estimates are almost

off by 1 L/min. Also, notice that pig #9 was initially hypotensive. Further investigation of the

dependency of estimation error and mean arterial pressure reveals that there exists a correlation

between the level of MAP and the prediction error as can be seen in Figure 5-7. The number of

samples corresponding to low MAP is larger than that for high MAP, however, it is fair to conclude

that for low MAP, the variance of the estimation error is larger than the variance for high MAP,

and that the estimation algorithm is more likely to underestimate cardiac output as the mean of the

prediction error is negatively biased.

The prediction error is not the only indication that the estimation algorithm is not as accurate

for low MAP as for normal or high MAP. The bottom plot in Figures 5-3, 5-4, 5-5, and 5-6 show the

fit RMSE between the pressure cycle generated by the modified Windkessel model and the measured

pressure waveforms. We observed that for low MAP, the fit RMSE is higher than that in the normal

and hypertensive cases. This dependency of the estimates accuracy on MAP can be justified by

the relationship between arterial compliance and pulse pressure. In Chapter 3, we indicated that

compliance is a pressure-dependent parameter which is highly correlated with pulse pressure: for

a given stroke volume, when pulse pressure decreases arterial compliance is expected to increase.

However in our estimation algorithm, we hold both Cap and Cad constant. Under the assumption

that compliance is equal to the ratio of stroke volume to aortic pulse pressure, Eq. 3.12 states

that pulse pressure scales with MAP, and consequently, compliance should be dynamically adjusted

throughout the estimation process.

5.4 Statistical Significance of Estimated Parameters

In the previous section we evaluated the performance of the estimation algorithm for each of the

pigs. We now attempt to describe the aggregate performance of the algorithm by first determining

the aggregate RMSNE over all four pigs, followed by the Bland-Altman plot using all estimated

cardiac output values.

Aggregate RMSNE: The aggregate RMSNE for all four pigs combined is about 13.8% using

45509 CO samples. The estimation error has a mean equal to -0.094 L/min and a standard deviation

of 0.486 L/min.
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Figure 5-7: CO estimation error as a function of the mean arterial pressure. The higher the MAP,
the larger the CO estimation error. The correlation, r 2, between MAP and the Estimation error is
0.19

Linear regression: Figure 5-8 superimposes the equality line, on a scatter plot of COest and

COtrue. It can be seen that most samples lie along the direction of the COest = COtrue line which

suggests that the estimates obtained from the modified Windkessel model agree with the measured

values. The correlation coefficient, r, between COest and COtrue is equal to 0.87 (p < 0.001).

Bland-Altman plot [57]: In order to assess the agreement between COest and COtrue, we gen-

erate the Bland-Altman plot, an extensively used method in clinical research for the comparison

between different methods of measuring some physiological quantity [57]. The Bland-Altman plot

in Figure 5-9 shows the correspondence between the estimation error and the average of the values

from the two methods. It can be seen that most of the estimates lie within ±0.960 L/min, which

allows us to claim that our estimation algorithm is a good alternative to the aortic flow probe.

5.5 Limitations

1. The precision of the cardiac output estimates comes with a computational cost which could

be met using more powerful computers. On average, the expected running time of the esti-

mation algorithm is six times longer than the actual duration of the waveform. We ran the

estimation algorithm on a Pentium 4 machine (3.4 GHz, 1.00 GB of RAM). The current high

computational cost does not allow us to use the estimation algorithm as an online estimation

scheme in ICUs.
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Figure 5-8: Linear regression plot for cardiac output estimates for 45,509 beats.

2. The algorithm requires a cardiac output measurement for the first cycle in order to set the

weak parameters at some fixed value.

3. We hold pressure-dependent parameters at fixed values. We previously observed in Section

5.3 that the prediction error and the resulting fits are worse when MAP is low as we do not

dynamically adjust the arterial compliances.

5.6 Concluding Remarks

We applied the estimation algorithm to four pigs in various hemodynamic states. We obtained reli-

able estimates of cardiac output and arterial resistance with high confidence: the aggregate RMSNE

over the four pigs was 13.8%. The Bland-Altman plot suggests that the invasive flow measure-

ment for determining cardiac output can be interchanged with our estimation algorithm. However,

given the current method, it may be too computationally expensive to perform the estimation on a

beat-by-beat basis.
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Chapter 6

Conclusions and Future Work

In this thesis, we presented an ambitious attempt to estimate cardiac output and arterial resistance

from measurements of blood pressure using the modified Windkessel model. Our approach was

twofold: we first analyzed in detail the modified Windkessel model and its parameter space before

investigating the inverse problem of estimating cardiac output and arterial resistance using pressure

waveforms. In this chapter, we provide a summary of the thesis document followed by suggestions

for future work.

6.1 Summary

Chapter 2 addressed the limitations of the two-element Windkessel model and presented two higher

order variations: the three-element Windkessel model and the modified Windkessel model. We

qualitatively validated the modified Windkessel model as a good representation of the arterial tree

in both the time and the frequency domain. We further explored various pulse shapes for modeling

the blood outflow at the left ventricle. We observed that a parabolic pulse train provided good fits to

flow waveforms and resulted in well-behaved proximal and distal pressure waveforms. We concluded

Chapter 2 with a comparison of the two-element Windkessel model and the modified Windkessel

model in the frequency domain. We suggested that at low frequencies, the two-element Windkessel

model is equivalent to the modified Windkessel model, however, the equivalence does not hold at

high frequencies.

Chapter 3 presented a detailed analysis of the parameter space of the modified Windkessel

model. Sensitivity analysis was first conducted to determine the effect of each parameter on the

proximal and distal pressures. Given that the Hessian matrix was ill-conditioned, a subset selection

method was applied to our parameter space to determine which parameters could be estimated

accurately. Parameters Ra, Qmax and L were then chosen as strong parameters which could be well

identified using least squares techniques, while Cad, Cap and Pv were considered weak parameters.



We further simplified the parameter vector to contain Ra and Qmax only since their variations are

much faster than the variations in blood inertance, L. We then addressed the issue of setting

the weak parameters by first summarizing previous approaches developed by other researchers to

estimate arterial compliance and blood inertance.

Chapter 4 focused on the details of the inverse problem: estimating cardiac output and arte-

rial resistance from measurements of blood pressure waveforms. We first turned our attention to

the nonlinear dependency of pressure waveforms on the parameters, Ra and Qmax. We then pre-

sented the Gauss-Newton approximation to the Hessian to derive a nonlinear version of the least

squares method. The Levenberg-Marquardt regularization algorithm was then discussed as a possi-

ble regularization technique to stabilize the iterative estimation process. Finally, we described our

beat-by-beat estimation algorithm, including the details of setting up the initial conditions for the

state variables in the model and the best initial guesses for all six parameters.

Chapter 5 illustrated the validity of the our estimation algorithm using porcine data. We first

described the data set under investigation before reporting the performance of our estimation algo-

rithm on each of the pigs. We obtained promising results under various hemodynamic conditions.

The limitations of our estimation algorithm were then laid out.

6.2 Suggested Improvements to the CO Estimation Algo-

rithm

In Chapter 5, we listed some of the limitations of our estimation scheme. Bypassing these limitations

could result in substantial improvement of the accuracy of the computed estimates and consequently,

our estimation method would yield reliable assessment of cardiac output. We will explore three

possible adjustments to the algorithm.

Beat-by-beat compliance estimation: In Chapter 3, we presented a detailed summary of meth-

ods developed by other researchers to estimate either total arterial compliance in the two-element

Windkessel model or the three-element Windkessel, or the proximal and distal compliances in the

modified Windkessel model. Some methods assumed a nonlinear pressure-volume relationship which

lead to a pressure-dependent compliance. In Chapter 5, we saw that one of the limitations of our

estimation algorithm is that it does not adjust the arterial compliances with variations in MAP.

Such an improvement could result in much better cycle fits and cardiac output estimates in low

pressure conditions.

Online estimation: In Chapter 5, we discussed the computational limitation of our estimation

algorithm which hinders the applicability of our method in the ICU. Given that the current gold



standard consists of intermittent measurements of cardiac output via thermodilution, we could

modify our estimation scheme so that it estimates cardiac output and arterial resistance every

tenth beat. Consequently, the estimation algorithm will resemble any other online method for the

estimation of cardiac output. An additional step could be taken to reduce the noise within the

cycle, namely, to average every 10 beats so that the target beats resemble the pressure waveforms

generated by the modified Windkessel model. During transients, a beat-by-beat estimates should

be obtained.

Estimating 3 = :• For human subjects, we set 0 = 3VJ-k. However, this relationship does not

hold for porcine data, T , 2.4. For the validation of our estimation scheme on porcine data, weT,8
fixed 0 at 2.4. The sensitivity of the pressure waveforms to 3 could justify some of the high errors

observed in the waveform fit RMSE which we could minimize by dynamically adjusting / based on

heart rate. Further studies of flow waveforms are needed to determine relationships between heart

rate and 3.

6.3 Plausible Extensions

In addition to the improvements to our estimation algorithm, we also suggest some promising re-

search explorations.

Applying the estimation algorithm to human data: Our estimation algorithm performed

well on porcine data but we ultimately would like to provide an alternative to thermodilution in

the ICU, which requires extensive application to human data. The MIMIC II database [24] contains

all necessary inputs to our estimation algorithm. Given that intermittent measurements of cardiac

output were taken using thermodilution, we could validate the resulting beat-by-beat estimates of

cardiac output to that obtained using the two-element Windkessel in Parlikar et al. [19].

Frequency domain analysis: We saw in Chapter 2 that the modified Windkessel model has

the same frequency response over low frequencies as the two-element Windkessel model. Over low

frequencies, the total arterial compliance, Ca, in the two-element Windkessel is approximately equal

to the sum of the two compliance, Cad and Cap. The above observation motivates the implementation

of a cascaded estimation scheme in which we first estimate the parameters of the two-element

Windkessel based on Parlikar and coworkers method in [19] and then we estimate the parameters of

the modified Windkessel model: L, Cad and Cap.

Signal quality index: Our estimation algorithm relies on the information embedded in the intra-

beat dynamics of each cycle. Hence, if the morphology of the pressure cycle is distorted either by



wave reflections or by external disturbance to the transducer, we cannot expect to obtain accurate

estimates of CO. It is therefore beneficial to compute a signal quality index which will determine

whether the pressure waveforms we use are to be trusted or not. Such an approach has been adopted

by Sun [13] who developed a signal quality index as a pre-processing step CO estimation algorithms.
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