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False alarm reduction in critical care

Abstract
High false alarm rates in the ICU decrease quality of care by slowing staff 
response times while increasing patient delirium through noise pollution. 
The 2015 PhysioNet/Computing in Cardiology Challenge provides a set of  
1250 multi-parameter ICU data segments associated with critical arrhythmia 
alarms, and challenges the general research community to address the issue 
of false alarm suppression using all available signals. Each data segment was 
5 minutes long (for real time analysis), ending at the time of the alarm. For 
retrospective analysis, we provided a further 30 seconds of data after the alarm 
was triggered.

A total of 750 data segments were made available for training and 500 were 
held back for testing. Each alarm was reviewed by expert annotators, at least two 
of whom agreed that the alarm was either true or false. Challenge participants 
were invited to submit a complete, working algorithm to distinguish true from 
false alarms, and received a score based on their program’s performance on 
the hidden test set. This score was based on the percentage of alarms correct, 
but with a penalty that weights the suppression of true alarms five times more 
heavily than acceptance of false alarms.

We provided three example entries based on well-known, open source 
signal processing algorithms, to serve as a basis for comparison and as a 
starting point for participants to develop their own code. A total of 38 teams 
submitted a total of 215 entries in this year’s Challenge.

This editorial reviews the background issues for this challenge, the 
design of the challenge itself, the key achievements, and the follow-up 
research generated as a result of the Challenge, published in the concurrent 
special issue of Physiological Measurement. Additionally we make some 
recommendations for future changes in the field of patient monitoring as a 
result of the Challenge.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

During the last decade, over a period of seven years, intensive care unit (ICU) admissions at 
US hospitals increased by 48.8% with a mean biennial increase of 14.2%. By comparison, 
overall emergency department (ED) visits increased by 5.8% biennially. In absolute terms, 
admissions jumped from 2.79 million in 2002–2003 to 4.14 million in 2008–2009, accord-
ing to data from the National Hospital Ambulatory Care Survey (Mullins et al 2013). The 
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three most common diagnoses for ICU admissions were unspecified chest pain, conges-
tive heart failure, and pneumonia. Utilization rates of most tests and services delivered to 
patients admitted to the ICU from the ED increased, with the largest increase occurring 
in computed tomography (CT) and magnetic resonance imaging (MRI), which increased 
from 16.8% in 2002/2003 to 37.4% in 2008/2009, a 6.9% mean biennial increase. These 
findings suggested emergency physicians were sending more patients on to the ICU. The 
increase might be the result of an older, sicker population that needs more care (Mullins 
et al 2013).

ICU patients require a high level of acute care, with numerous bedside monitors which are 
continuously measuring both invasive and non-invasive variables. These monitors provide 
synchronous waveforms with both independent and complementary information. Huge ICU 
databases are therefore becoming available, and include parameters such as the electrocardio-
gram (ECG), the photoplethysmogram (PPG), the arterial blood pressure (ABP) waveform, 
and respiratory effort. In clinical practice these signals are processed individually to trigger an 
alarm when a derived parameter (such as heart rate) exceeds a pre-defined range. These alarms 
are frequently false alarms (FAs) and account for a large majority of all alarms generated in 
the ICU (Chambrin et al 1999).

The high rate of false alarms significantly burdens clinical staff, which can lead to decreased 
quality of care (Donchin and Seagull 2002, Imhoff and Kuhls 2006), impacting both the patient 
and the clinical staff through noise disturbances, desensitization to warnings, slowing of 
response times (Chambrin 2001) and missed true alarms (Allen and Murray 1996, Chambrin 
2001, Hug et al 2011). ICU alarms produce sound intensities above 80 dB that can lead to 
sleep deprivation (Meyer et al 1994, Chambrin 2001, Parthasarathy and Tobin 2004), inferior 
sleep structure (Slevin et  al 2000, Johnson 2001), stress for both patients and staff (Cropp 
et al 1994, Novaes et al 1997, Topf and Thompson 2001, Morrison et al 2003) and depressed 
immune systems (Berg 2001). There are also indications that the incidence of re-hospitalization 
is lower if disruptive noise levels are decreased during a patient’s stay (Hagerman et al 2005). 
Furthermore, such disruptions have been shown to have an important effect on recovery and 
length of stay (Cropp et al 1994, Donchin and Seagull 2002). In particular, cortisol levels have 
been shown to be elevated (reflecting increased stress) (Topf and Thompson 2001, Morrison 
et al 2003), and sleep disruption has been shown to lead to longer stays in the ICU (Parthasarathy 
and Tobin 2004). ICU false alarm (FA) rates as high as 90% (Aboukhalil et al 2008) have been 
reported, with between 6% and 40% of ICU alarms having been shown to be true but clinically 
insignificant (requiring no immediate action) (Lawless 1994). In fact, only 2% to 9% of alarms 
have been found to be important for patient management (Tsien and Fackler 1997). In response 
to this, thresholds and filter settings for alarms are often manipulated on a case-by-case basis in 
response to an individual clinical user’s preferences (to reduce annoyance), which may well be 
sub optimal in terms of the trade off between true and false alarms (Mullins et al 2013).

In the 2015 PhysioNet/Computing in Cardiology Challenge (Clifford et al 2015) (http://physionet. 
org/challenge/2015), we aimed to address the problem of high false alarm rates by encouraging 
the development of new algorithms to improve the specificity of ICU alarms. In this Challenge, 
we focused on five types of life-threatening arrhythmia events, which we defined as follows:

Asystole (ASY): No heartbeats for a period of 4 s or more.
Extreme bradycardia (EBR): Heart rate lower than 40 beats per minute; fewer than five 

beats occur within a period of 6 s.
Extreme tachycardia (ETC): Heart rate higher than 140 beats per minute; more than 17 

beats occur within a period of 6.85 s.
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Ventricular tachycardia (VTA): Five or more consecutive ventricular beats within a period 
of 2.4 s (a rate of 100 per minute)

Ventricular fibrillation or flutter (VFB): The heart exhibits a rapid fibrillatory, flutter, or 
oscillatory waveform for at least 4 s.

Participants in the Challenge were given samples of ICU patient waveforms that were 
identified by the bedside monitor as falling into one of the above categories, and were tasked 
with devising an algorithm to determine which of these alarms represented true arrhythmias, 
and which were caused by other factors (such as noise, patient movement, leads falling off, or 
mis-identification of ECG features on the part of the monitor.)

The Challenge was divided into two events. Event 1 was a simulation of the real-time 
alarm suppression problem: the algorithm needed to determine whether the alarm was true or 
false based solely on the information available before the alarm was first triggered. In Event 
2, algorithms were also able to see 30 seconds worth of waveform data following the time of 
the alarm, and could use this information to retrospectively classify the alarm as true or false. 
The development of an algorithm that could reliably solve either of these problems would be 
a major step forward in patient care.

2.  Example algorithms

Key to rhythm detection is accurate heart rate estimation. Several ECG R-peak detection algo-
rithms are freely available, several of which were used in the Challenge example entries.

eplimited (available at www.eplimited.com) (Hamilton and Tompkins 1986), which used 
digital filtering and a group of decision rules.

sqrs (available on PhysioNet (Goldberger et al 2000)) (Engelse and Zeelenberg 1979), which 
uses a single scan of the sampled data and combines digital filter preprocessing with a 
detector and feature extractor based on dynamically adjusted slope and timing criteria.

wqrs (available on PhysioNet) (Zong et al 2003b), which is based on the length transform.
gqrs (available on PhysioNet), which consists of a QRS matched filter with a custom built set 

of heuristics (such as search back).
coqrs (Nygårds and Sörnmo 1983, Clifford 2002, Oster et al 2013) based on the peak energy 

(no search back).
jqrs (Behar et al 2014a, 2014b) consists of a window-based peak energy detector but with 

replacement of the original band-pass filter with a QRS matched filter (Mexican hat) and 
an additional heuristic ensuring no detection were made during flat lines.

Detection of the onset of the pulses in the ABP and PPG signals can provide further infor-
mation on rhythm and rate. An open-source algorithm, wabp (Zong et al 2003a), is available 
from PhysioNet. The algorithm consists of three components: (1) a low-pass filter which is 
to suppress high frequency noise that might affect the onset detection; (2) a windowed and 
weighted slope sum function (SSF) which is to enhance the up-slope of the pulse and to sup-
press the remainder of the pressure wave; (3) a decision rule which allows for detection of 
each SSF pulse onset.

We provided three example Challenge entries, based on these and other open-source algo-
rithms, and implemented in various programming languages, to serve as a basis on which 
participants could develop their own code.

The simplest example entry (#1) used wabp and gqrs, along with the gqfuse tool (available 
on PhysioNet), to analyze all available signals and select the most stable sequence of RR inter-
vals, in order to detect asystole, bradycardia, and tachycardia. To detect the onset of VFB, this 
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entry analyzed the ECG and pulsatile signals separately (using gqfuse for each), and searched 
for a 10 s interval where the QRS rate and pulse rate were equal, followed by a 3 s interval in 
which the QRS rate increased by at least 25% and the pulse rate decreased by at least 75%. 
This entry did not attempt to detect VT.

A second example entry (#2) written in MATLAB used wabp to detect the beats and used 
jSQI (Sun et al 2006) and a template matching SQI (Li and Clifford 2012) to estimate the 
signal quality from ABP and PPG channels. For the ECG, an agreement level of two R-peak 
detectors ( ph gqrs and ph coqrs) in a 10 s window, evaluated every second, known as bSQI, 
was used (Behar et al 2013).

Finally, the third sample entry (#3) was provided for Octave users, with functions from the 
WFDB toolbox for Octave/MATLAB Silva and Moody (2014). This sample entry ran three 
QRS detectors from the WFDB toolbox: wqrs on signal 1, sqrs on signals 1 and 2, and gqrs on 
signals 1 and 2. The results of the QRS detectors were then used to compute three tachograms. 
A decision was made on the veracity of the alarm based on the average pair-wise correlation 
between the tachograms 30 s prior to the alarm (a threshold was set arbitrarily based on the 
training data).

2.1.  Signal quality

Signal quality indices (SQIs), which assess the signal quality or noise levels of the signals, 
can be extracted from the waveforms and used as weighting factors to allow for varying trust 
levels in the source data. The ECG signal quality has been extensively studied (Li et al 2008, 
2014b, Clifford et al 2012, Behar et al 2013). For the benchmark algorithms, an agreement 
level of two R-peak detectors in a 10 s window, evaluated every second, known as bSQI, was 
used. Intuitively, the presence of noise and artifacts will lower the agreement level between 
two semi-independent detectors. The bSQI was recently successfully used on a database with 
pathological rhythms (Li et al 2008, Behar et al 2013). The ABP signal quality was evaluated 
using an open-source algorithm (Sun et al 2006) which flags a signal as bad quality if derived 
parameters from a blood pressure wave are not in reasonable physiological ranges. The PPG 
signal quality was also evaluated (Li and Clifford 2012) which matches a running PPG tem-
plate with the pulsatile beat by dynamic time warping, simple matching, linear resampling 
matching and a clipping detection. When the signal quality was equal or greater than 0.9 and 
the corresponding HR or beat-to-beat interval derived from either the ABP or PPG did not 
surpass a predefined HR threshold (4 s for ASY, 40 bpm for EBR, 140 bpm for ETC, 100 bpm 
for VTA and 250 bpm for VFB), the alarm was suppressed as a false alarm.

It should be noted that no ECG signal quality metrics were used in our benchmark algo-
rithms, although previous studies using the agreement of beat detectors for signal quality 
estimation have shown great promise in this area (Behar et al 2013). We also note that no 
ECG-based rhythm detection was used, although various open source algorithms were made 
available to the Challenge participants (Li et al 2014a).

2.2.  Voting algorithms

We also implemented a voting approach to combine together varying numbers of algorithms. 
A simple unweighted voting of the N best performing final entries, ranked by their score on the 
training data (to prevent overfitting on the test scores, was implemented). N was varied from 
1 to 37 with tied, absent or no vote was treated as ‘true’. In other words, a forward selection 
approach was used to select which algorithms should be combined.

EditorialPhysiol. Meas. 37 (2016) E5
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3.  Challenge data

Data for the Challenge consisted of waveform recordings from ICU patients in four hospitals 
in the USA and Europe, representing three major manufacturers of ICU monitoring equipment. 
For each arrhythmia alarm matching our selection criteria, we collected all available multi-
parameter waveforms (including at least five minutes of data before and after each alarm), as 
well as the alarm messages themselves, and any other status messages reported by the monitor. 
If possible, we also collected a list of the fiducial points and types of beats that were detected 
by the monitor; in some cases, the monitor did not provide this information. All of the signals 
were filtered in order to remove spectral characteristics that might identify the manufacturer or 
the country of origin. They were then resampled to 250 Hz and scaled to a 16-bit range. The 
specific names of the various alarm annotations were also normalized to anonymize the data.

3.1.  Expert labeling

To build the ‘gold standard’ list of true and false alarms, a team of experts visually inspected 
the waveform record at the time of each alarm. Each annotator worked independently and was 
assigned a randomized list of patients to review. For each alarm, the annotator was initially 
shown 15 s of waveforms prior to the alarm and 5 s after it, but could resize and scroll the 
window in order to examine earlier and later portions of the record. If possible, the monitor-
computed beat labels were also displayed.

After examining the alarm label and surrounding waveforms, the annotator was asked to 
press one of four buttons: true, false, reject, or uncertain. The reject label was used for records 
that were clearly fallacious (usually due to bugs in the monitor’s data-exporting interface.) In 
order for an alarm to be included in the Challenge data set, it had to be independently reviewed 
by at least two annotators of whom a two-thirds majority had to agree that the alarm was either 
true or false.

3.2. Training and test data

From the set of 1564 alarms meeting all of the above criteria, we randomly picked 1250 to 
serve as training and test data for the Challenge (see table 1). The distribution of alarms was 
chosen to reflect the distribution of alarm types in the original data set (17% ASY, 11% EBR, 
17% ETC, 47% VTA, 7% VFB) as well as to maintain the approximate true-to-false ratio for 
each alarm type. No single patient appeared in both the training and test sets, and no single 
manufacturer or hospital made up more than half of the records in either set.

Up to four signals were selected from each record: two ECG leads and up to two other 
signals including ABP, PPG, or respiration. The public training set consisted of 375 ‘short’ 
records, containing only the five minutes leading up to the alarm, and 375 ‘long’ records, con-
taining a further 30 s after the alarm. The hidden test set consisted of 250 ‘short’ records (used 
only for Event (1)) and 250 ‘long’ records (used for both events). Each record was labeled 
with the alarm type, and in the case of the training set, whether the alarm was true or false. The 
records did not include the monitor-computed beat fiducial points or heart rate.

4.  Scoring

Participants were asked to submit their entries in the form of a compressed archive that included 
everything needed to compile and run their program on a GNU/ Linux system, together with 
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the results that they expected their program to produce for the records in the public training 
set. When an entry was uploaded, the scoring system would first attempt to compile the pro-
gram and run it over a randomly selected subset of the training set; if this did not produce the 
expected results, evaluation stopped and the error messages were sent back to the submitter.

Once the program was successfully compiled and validated, it was then invoked for each 
record in the test set.1 If the program failed to produce output for a given record, it was treated 
as if it had classified that alarm as true.

For each category, the entry’s score was computed based on the number of true positives 
(true alarms classified as true), false positives (false alarms classified as true), true negatives, 
and false negatives. The scoring function was designed to treat false negatives—genuinely 
life-threatening events that the program considered unimportant—especially harshly, and was 
defined as:

( )
=

⋅ +
+ + + ⋅

TP TN

TP TN FP FN
score

100

5

5.  Results of the Challenge

A total of 29 closed-source entries and 215 open-source entries were submitted in the 
Challenge in 2015. Table 2 provides a breakdown of the top scoring entries. A different con-
testant ranked highest in each separate alarm category, indicating that there was no best gen-
eral algorithm. Interestingly, a simple majority vote of all the 38 competitors’ final entries 
gave scores of 60.15 in the real-time event and 62.41 in the retrospective event. These moder-
ate performances, well below the top 10 algorithms, indicating that simple voting schemes do 
no yield an improved performance in this context, since the performance tail is long. A voting 
algorithm using the N  =  13 best performing final entries ranked by their score on the training 
data, provided the highest scores in both event 1 (84.26) and event 2 (87.04), although N  =  11 
was sufficient to beat the best performance in either event. Figure 1 illustrates the performance 
of a simple voting approach for both the retrospective and prospective parts of the Challenge. 
Note that performance only degrades above 13 algorithms.

Table 1.  Types of alarms and signals used in the challenge.

Training (N  =  750) Test (N  =  500)

False True False True

ASY 100 20 90 12
EBR 45 45 38 26
ETC 8 131 5 68
VTA 253 90 176 45
VFB 52 6 34 6

PPG 227 178 158 83
ABP 59 63 58 39
Both 172 51 127 35

Total 458 292 343 157

Note. Each of the N records included two ECG channels.

1 For the 250 ‘long’ records, the program was invoked twice: once with the full record as input, and once with a 
truncated version.
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6.  Review of articles in the special issue

A total of 13 articles were reviewed and revised in time to be accepted for this special issue. 
Most authors had originally entered the Challenge, and submitted updated versions of their algo-
rithms, which should be made available by the authors through their open source licenses. The 
top reported results on the hidden test set for each alarm type were: ASY: 97.4% (Plešsinger et al 
2016), EBR: 93.8% (Krasteva et al 2015a), ETC: 100.0% (Hoog Antink et al 2016), VFB: 88.7% 
(Rodrigues and Couto 2016), and VTA: 76.7% (Kalidas and Tamil 2016), yielding an average 
best of 91.2%.

Each algorithm published in this issue is reviewed below according to four standard stages 
of algorithm function:

	 1.	Pre-processing and signal conditioning
	 2.	Beat detection
	 3.	Beat classification
	 4.	Alarm classification

The purpose of this standardized summary is to glimpse at a myriad of advanced approaches 
used by the competitors in a format that allows the reader to quickly identify both the com-
monalities and the originality of all the approaches. Finally, the last two articles in this review 
(Daluwatte et al 2016, Tsimenidis and Murray 2016) did not attempt to reduce the number 
of false alarms, but rather provide some useful insights into the relationship between signal 
quality metrics and false alarm rates.

Table 2.  Final scores for the top 9 entrants in both events (real-time and retrospective) 
ranked by overall real-time score, the three example algorithms provided and a voting 
approach.

Entrant

Event 1 (Real-time)
Event 2 

(Retrospective)

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

Plešsinger et al (2015) 92 88 81.39 95 88 84.96
Kalidas and Tamil (2015) 94 82 79.44 94 86 81.85
Krasteva et al (2015b)a 93 83 79.41a 93 84 79.56a

Couto et al (2015) 89 91 79.02 88 92 78.28
Fallet et al (2015) 94 77 76.11 99 80 85.04
Hoog Antink and Leonhardt (2015) 93 77 75.55 90 82 75.18
Eerikäinen et al (2015) 90 82 75.54 89 85 75.52
Ansari et al (2015) 89 84 74.48 89 87 76.57
Liu et al (2015) 89 79 71.68 93 78 75.91
Example algorithm 1 76 44 41.41 73 46 40.83
Example algorithm 2 86 38 45.07 84 38 44.37
Example algorithm 3 64 76 45.59 61 77 47.35
Voting algorithm (N  =  11) 94 87 82.78 94 93 86.67

Voting algorithm (N  =  13) 94 90 84.26 94 94 87.04

a Denotes an unofficial (‘closed-source’) entry. Underlined scores are the highest unofficial 
scores in the table.
Note. Best performances of competition entrants are in bold. TPR  =  fraction of true alarms  
correctly classified; TNR  =  fraction of false alarms correctly classified.
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6.1.  Ansari et al (2016)

Ansari et al (2016) proposed an algorithm that uses several beat detectors within each channel, 
followed by beat classification, and heuristics to determine the veracity of the alarm. The pro-
posed algorithm operates on 16 s of worth of data prior to the alarm. The algorithm achieved a 
performance accuracy on the final test data-set of ASY: 86.4%, EBR: 79%, ETC: 93.9%, VFB: 
61% VTA: 67.6%, yielding a total average of: 76.2%.

6.1.1.  Preprocessing.  The preprocessing steps consisted of re-sampling the signals to 125 Hz.  
The ECG signals were band-pass filtered between 0.5–40 Hz, while the pulsatile signals were 
band-pass filtered between 0.5–10 Hz. Baseline and trend estimation and subtraction was 
accomplished with a 250 point median filter. The authors also removed pacemaker activity by 
thresholding on the peak amplitude.

6.1.2.  Beat detection.  Ansari et al (2016) implemented 7 different QRS detectors for each 
ECG signal, and 3 peak detectors for each of the pressure signals. The fiducial points for all 
peaks were re-aligned by picking the maximum within 50 ms of the detected beat for ECG 
signals, and the maximum within 50 ms before or 1 s after the detected beat for the ABP or 
PPG signals. The outputs of all the 20 beat detectors were then fused by adding their binary 
outputs (with at least 1 beat under AS, at least 2 for other alarms).

6.1.3.  Beat classification.  ECG beat classification was performed for the VFB and VTA 
alarms only. The beat classifier was a decision tree that utilized features derived from the 
Stockwell Transform on a 200 ms window.

6.1.4.  Alarm classification.  A decision tree classifier was trained with five fold cross valida-
tion in order to determine the veracity of a beat. The final decision regarding the alarm verac-
ity was made based on a set of heuristics.

Figure 1.  Performance of voting algorithms as a function of number of algorithms for 
both the real time and retrospective events. Algorithms were chosen by ranking them 
in descending order of score on the training data, and the test data score was reported  
(to prevent over-estimation of the score). Equal weights were given to all algorithms 
and a tied, absent or no vote was treated as ‘true’.
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6.2.  Eerikäinen et al (2016)

Eerikäinen et al (2016) produced an algorithm that achieved a performance accuracy on the 
final test data-set of ASY: 89.2%, EBR: 71.5%, ETC: 99.1%, VFB: 81.8% VTA: 68.1%, yield-
ing a total average of: 77.3% and a retrospective average of 81.5%.

6.2.1.  Preprocessing.  All signals were down-sampled to 125 Hz and the processing 
window length was optimized for each arrhythmia type (varying from 14 to 16 s prior to 
the alarm). Noise levels were estimated based on the power estimated from the regions 
in-between beats.

6.2.2.  Beat detection.  Beat detection on the ECG waveforms were performed using a QRS 
detector based on wavelets and auto-regressive modeling of the R-peak (Rooijakkers et al 
2012). The pulsatile peaks were detected via the open source detector wabp.

6.2.3.  Alarm classification.  A random forest classifier was trained for each of the five different 
types of alarms. The technique focused on comparing pairs of beats. Two beats were considered 
a match if they were within 100 ms of each other. Delays across channels were compensated for 
if the standard deviation of 10 consecutive beats was less than 5% of the mean delay. For the 
VTA and VFB alarms, only the F1 statistic between ECG leads was used, in addition to spectral 
purity indexes. An alarm with an F1 equal to zero was identified to be false.

6.3.  Fallet et al (2016)

Fallet et al (2016) proposed an algorithm that detects beats in the ECG sand the pulsatile sig-
nals, provided their signal quality is good. The authors also use a spectral purity metric to aid on 
the classification of VTA and VFB alarms. The algorithm achieved a performance accuracy on 

Table 3.  Performances of the competitors in both events (real-time and retrospective) 
ranked by overall real-time score during the follow-up phase (Spring 2016).

Authors

Real-time Retrospective

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

Plešsinger et al (2016) 93 87 81.62 (81.39) 95 88 84.96
Krasteva et al (2016) 92 87 80.07 (79.41a) 93 88 81.75 (79.56a)
Kalidas and Tamil (2016) 94 82 79.44 94 86 80.29 (81.85)
Hoog Antink et al (2016) 95 78 78.20 (75.55) 93 76 74.45 (75.18)
Eerikäinen et al (2016) 93 80 77.39 (75.54) 95 83 81.58 (75.52)
Fallet et al (2016) 95 76 77.07 (76.11) 99 80 85.04
Ansari et al (2016) 89 85 76.23 (74.48) 88 84 73.40 (76.57)
Rodrigues and Couto (2016) 92 78 74.28 (79.02) 92 78 74.46 (78.28)
Liu et al (2016) 89 79 71.68 93 78 75.91
Sadr et al (2016) 95 65 69.92 98 66 74.03
Tsimenidis and Murray (2016) 92 66 67.88 92 69 68.71
Daluwatte et al (2016) — —
Zong et al (2016) — —
a Denotes an unofficial (‘closed-source’) entry.
Note. Best performances are in bold. TPR  =  fraction of true alarms correctly classified; TNR  =  fraction of false 
alarms correctly classified. Numbers in the parentheses are the score of competition entrants if they are different 
with those in the follow-up phase.
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the final test data-set was ASY: 84.2%, EBR: 82.4%, ETC: 86.9%, VFB: 87.1% VTA: 72.7%, 
yielding a total average of: 77.07% and an average on the retroactive category of 85.0%.

6.3.1.  Preprocessing.  The preprocessing stage for this algorithm consisted of 50 Hz power 
line noise removal. For the calculations of spectral purity indexes, the signal was down- 
sampled to 35 Hz and a 5-sample moving average filter was applied. The signal quality for the 
pulsatile waveforms was estimated through the ppgSQI and jSQI methods (Clifford et al 2015).

6.3.2.  Beat detection.  The QRS component of the ECG signal was detected through a mor-
phological analysis approach with an adaptive approach from Yazdani and Vesin (2014). Beat 
detection on the pulsatile signals was performed using the algorithm proposed by Arberet et al 
(2013). The heart rate time series was then derived through a multi-channel oscillator based 
adaptive frequency tracking algorithm.

6.3.3.  Beat classification.  The spectral purity index (Goncharova and Barlow 1990, Sörnmo and 
Laguna 2005) was used a feature to distinguish between normal, ventricular tachycardia, ven-
tricular flutter/fibrillatory arrhythmia (the index was expected to be higher for abnormal rhythms).

6.3.4.  Alarm classification.  A set of heuristics rules was developed for the final alarm clas-
sification. In the case of the ASYS alarm, the algorithm applied majority voting based on the 
heart rate series from individual ECG and pulsatile channels. The pulsatile channels were 
only used if the quality was above a certain threshold. A linear discriminant analysis classi-
fier was used for the retrospective event to corroborate the ECG output, but again, only if the 
pulsatile signal quality was sufficiently high. If the pulsatile quality was low, a set of heu-
ristic thresholds was applied to the minimum heart rate from the last five consecutive beats 
using 16 s before and 5 s after the alarm. The extreme tachycardia alarm only used pulsatile 
waveforms: if the quality was good, the alarm was checked against the pulsatile rate, else it 
defaulted to true. Ventricular flutter/fibrillatory alarms were checked through the maximum 
average spectral purity index calculation over a 3 s window, and no pulsatile information 
was used. Finally, ventricular tachycardia alarms used a set of heuristic rules encompassing 
pulsatile waveform heart-rate series, as well as current versus previous values of the ECG 
spectral purity indexes.

6.4.  Hoog Antink et al (2016)

The algorithm proposed by Hoog Antink et al (2016) used 16 s of data prior to the alarm event. 
The algorithm achieved a performance accuracy on the final test data-set of ASY: 76.7%, 
EBR: 74.2%, ETC: 100%, VFB: 72.8% VTA: 71.5%, yielding a total average of: 78.2% and 
retrospective average of 74.4%.

6.4.1.  Preprocessing.  The pre-processing steps for this algorithm included re-sampling of 
the signals to 100 Hz, band-pass filtering with a pass-band region of 1–30 Hz. The signals 
were also normalized to zero mean and unit variance using statistics calculated on 5 min of 
data prior to the alarm.

6.4.2.  Beat detection.  Beat detection was achieved through the Bayesian fusion of sev-
eral inter-beat interval estimators that rely on self-similarity: lag adaptive short-time auto- 
correlation, average magnitude difference function, and maximum amplitude pairs (Brüser 
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et al 2013). A quality metric based on the reliability of the fused estimates was derived from 
the peak height to area of the fused similarity curve.

6.4.3.  Alarm classification.  The classifiers chosen for the alarm validation included binary 
classification trees, regularized linear discriminant analysis, a support vector machine, and a 
random forest. The authors utilized a combination of both alarm specific and global classifiers 
(i.e, classifiers trained to detect a general false alarm). Their final choices were linear discrimi-
nant analysis for EBR, VFB, and VTA, a binary classifier for ETC, and a random forest model 
for ASY. A superset of 88 features was developed from: 24 beat-to-beat interval statistics and 
correlogram analysis of interval time series. From this superset, subsets were selected accord-
ing to alarm types.

6.5.  Kalidas and Tamil (2016)

The algorithm proposed by Kalidas and Tamil (2016) used 10 s of data prior to the alarm. 
The algorithm achieved a performance accuracy on the final test data-set of ASY: 80.7%,  
EBR: 71.7%, ETC: 99.1%, VFB: 74.1% VTA: 76.7%, yielding a total average of: 79.4% and 
retrospective average of 80.2%.

6.5.1.  Preprocessing.  Baseline wander was estimated with a low-pass filter with a 1 Hz cut-
off and then subtracted from original signal. Flat line artifact was detected by testing for iden-
tical sample values in 2 s windows. ‘Zig–zag’ artifacts were detected by testing for alternating 
positive and negative slopes in consecutive samples over 2 s periods.

6.5.2.  Beat detection.  The (Pan and Tompkins 1985) algorithm was used to detected QRS 
complexes in the ECG signal. Pulsatile peaks were detected through first order differentiation.

6.5.3.  Alarm classification.  No pulsatile signal information was used for VFB and VTA 
arrhythmia alarms. For each alarm type, an individual support vector machine and set of heu-
ristics was developed. The features used into these classifiers included the ECG-derived heart 
rate, and PPG-derived heart rate if morphology was considered valid (excluding the VFB and 
VTA alarms). The VFB and VTA alarms also included an additional set of features related to 
the power spectra of the ECG waveforms.

6.6.  Krasteva et al (2016)

The algorithm proposed by Krasteva et al (2016) used 3–7.5 s windows prior to the alarm 
event, with the specific duration tuned for the each alarm type. The algorithm achieved a 
performance accuracy on the final test data-set of ASY: 88.0%, EBR: 93.8%, ETC: 90.7%,  
VFB: 72.7% VTA: 72.6%, yielding a total average of: 80.0%.

6.6.1.  Preprocessing.  The ECG channels were fused to form two data streams: a magnitude 
(second norm) and a velocity (second norm of the first order derivative). The ECG signal 
quality was estimated using 3 frequency bands on 4 s interval windows: high frequency was 
used to estimate spikes from artifacts and pacemakers, medium frequency range was used to 
estimate the signal level and power line interference (with intra-beat temporal statistics used 
to estimate power line noise level), and the low frequency band was used to estimate baseline 
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wander. Pulsatile signals were low-pass filtered with a 1 Hz cut-off. The pulsatile signal qual-
ity was estimated with a periodicity index, and mean peak-to-peak amplitude values.

6.6.2.  Beat detection.  A nonlinear filtering approach, with adaptively updated upper and 
lower thresholds, was used for QRS detection. The beat detector had a conventional refractory 
period of 150 ms.

6.6.3.  Beat classification.  A beat classifier was developed for supra-ventricular and ven-
tricular ectopic beats. A decision tree model was also used, based on features that included: 
information from template correlation matching, beat morphology features, and RR statistics 
(Krasteva et al 2014, 2015a).

6.6.4.  Alarm classification.  The alarm classification algorithm used a set of heuristic rules 
based on heart rate, dominant frequency for ventricular rate, phase space area from both the 
ECG magnitude and velocity, and pulsatile quality metrics.

6.7.  Liu et al (2016)

Liu et al (2016) proposed an algorithm which processed 60 s of data prior to the alarm event. 
The algorithm achieved a performance accuracy on the final test data-set of ASY: 88.7%, 
EBR: 77.7%, ETC: 89.9%, VFB: 67.7% VTA: 61.0%, yielding a total average of: 71.6% and 
retrospective average of 75.9%.

6.7.1.  Preprocessing.  The ECG and pulsatile signals were band-pass filtered with the pass-
band frequency region of 5–40 Hz for the ECGs and a pass-band frequency region of 5–35 Hz 
for the pulsatile waveforms.

6.7.2.  Beat detection.  The authors developed an ECG R wave detection algorithm that used 
the average maximum amplitude from 6 non-overlapping segments. Pulsatile beats were 
detected via wabp . The final detected beats were validated based on intra- and inter-channel 
verification of the detected beats along with a set of rules involving the number of detected 
beats, R amplitude, and distance metrics between the heart rate time series.

6.7.3.  Beat classification.  A set of heuristics were applied to classify beats. The features 
included: morphology analysis based on correlation against template, the ratio between 
changed beats and total beats in segment, QRS width, and maximum heart rate.

6.7.4.  Alarm classification.  A set of decision rules was applied to channels that passed a data 
quality check (if the result of the test failed, the alarm was set to false). The features used for 
the second classification step included number of valid feature points, heart rate, and maxi-
mum heart rate at current analysis window.

6.8.  Plešsinger et al (2016)

Plešsinger et al (2016) developed an algorithm that used information across multiple channels 
and sought to detect regions contaminated by artifacts. The algorithm achieved a performance 
accuracy on the final test data-set was ASY: 97.4%, EBR: 83.5%, ETC: 87.8%, VFB: 80.3% 
VTA: 75.0%, yielding a total average of: 81.6% and a retrospective average of 84.9%.
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6.8.1.  Preprocessing.  The preprocessing step for this algorithm started with the detection of 
artifacts based on the temporal statistics of the signal under analysis. Noise and pacemaker 
activity were estimated based on spectral content of the 50–70 Hz frequency band. The pulsa-
tile signals were low passed filtered with cut-off frequency at either 5 or 20 Hz. The follow-
ing time windows prior to the alarm event were used to process the alarm data: ASY  =  14 s, 
EBR  =  16 s, ETC  =  14 s, VFB  =  13 s, VTA  =  10 s.

6.8.2.  Beat detection.  The ECG QRS detection was based on an analysis of Fourier and 
Hilbert Transform derived envelopes, with a 110 ms refractory period between detection. Pul-
satile based beat detection was evaluated on estimated temporal slope values.

6.8.3.  Beat classification.  Beat classification was performed using spectral features and 
descriptive residue statistics over 120 ms and 500 ms windows.

6.8.4.  Alarm classification.  The alarm classification stage for the ASY, VTA, and VFB alarms 
included using the count of invalid features obtained during the preprocessing stage described 
above. Additional features included statistics for the RR series obtained from multiple chan-
nels. The sum of the invalid areas had to be zero in order for the algorithm to accept the RR 
series as a regular rhythm for the specific channel. Finally, a set of heuristic rules was applied 
based on the derived RR series and the invalid region statistics.

6.9.  Rodrigues and Couto (2016)

Rodrigues and Couto (2016) proposed an algorithm that uses two open-source beat detec-
tors on the ECG waveforms as well as wabp on the pulsatile signals. The authors also per-
formed beat classification based on the phase of the R wave in the ECG signals. The algorithm 
achieved a performance accuracy on the final test data-set of ASY: 83.6%, EBR: 71.4%, ETC: 
99.1%, VFB: 88.7% VTA: 61.4%, yielding a total average of: 74.2% and a retrospective aver-
age of 74.4%.

6.9.1.  Preprocessing.  All signals were re-sampled to 125 Hz, and the ECG waveforms were 
processed for pacemaker detection and removal. Baseline noise was removed by first estimat-
ing it with a 125 sample median filter, followed by subtraction from the original signal. Flat 
signal regions were identified by thresholding on low variance over 2 s windows.

6.9.2.  Beat detection.  ECG QRS detection was performed using gqrs and osea software 
packages (Hamilton 2002). The beats on the pulsatile signals were detected with the wabp 
software. The authors developed their own specific beat detectors for ventricular fibrillation 
beats by fitting a parabola on 125 ms windows. Following the method of Li et al (2008), a 
quality index was developed based on the fraction of matched beats from gqrs and the osea 
software packages (Hamilton 2002) on the ECG channels.

For pulsatile signals , the quality was estimated using the morphology of consecutive 
beats estimated from correlation and dynamic time warp analysis, per (Li and Clifford 2012). 
The detected beats were fused based on quality indexes and a tolerance window of 150 ms. 
Pulsatile beats were compensated with a delay estimated from initial detections.

6.9.3.  Beat classification.  Beat classification was based on a set of heuristics modified from 
the osea software package (Hamilton 2002). These set of rules included statistics derived from 
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inter-beat interval and QRS duration. Rodrigues and Couto (2016) also developed a four-category 
feature, termed ‘polarity’ that characterized the different types of phases of the R wave into: posi-
tive, negative, positive-negative, negative-positive (the last two representing biphasic R waves).

6.9.4.  Alarm classification.  Alarm classification was calculated from a set of decision rules 
based on signal quality, but with priority weight given to ECG signals.

6.10.  Sadr et al (2016)

Sadr et al (2016) proposed an algorithm that uses features and processing specific arrhythmias 
being tested. The algorithm achieved a performance accuracy on the final test data-set was 
ASY: 82.4%, EBR: 71.13%, ETC: 99.1%, VFB: 65.5% VTA: 68.0%, yielding a total average 
of: 69.9% and a total average on the retrospective event of 74.0%.

6.10.1.  Preprocessing.  Baseline removal was performed by first estimating the baseline 
component through median filtering and then subtracting this baseline component from the 
original signal.

6.10.2.  Beat detection.  A Hilbert Transform based QRS detector based used for estimating the 
ECG beats (Benitez et al 2001). The wabp algorithm was used to detect the peaks on the ABP and 
PPG waveforms, and a quantile algorithm was also used to locate peaks on the PPG waveform.

6.10.3.  Alarm classification.  The alarm verification was performed on a 16 s window of data 
prior to the alarm. For all of the alarms with the exception of VTA, the alarm data streams 
had to pass four signal quality checks in order to be deemed a true alarm, otherwise they were 
tagged as being false. Pulsatile signal information was not used for the ETC and VTA alarms. 
The classification also consisted of decision trees based on several extracted features cus-
tomized to each alarm type, including: threshold crossing intervals, auto-correlation function 
values, complexity measures, and QRS template parameters.

6.11.  Zong et al (2016)

Zong et al (2016) is unique in that it proposed an algorithm based on pulsatile waveform fea-
tures. The algorithm was developed and tested using the MIMIC II database (Saeed et al 2011) 
rather than the Challenge data, and was not open sourced.

6.11.1.  Preprocessing.  Pulsatile signals were low-pass filtered with cutoff set to 16 Hz, and a 
signal quality estimate was obtained using the technique described in Zong et al (2004).

6.11.2.  Beat detection.  Beat detection was performed with the pulsatile signals using wabp 
and with a forced detection after a period of 2 s from the last detected pulse.

6.11.3.  Beat classification.  The pulsatile beats were classified based on the abnormality index 
from Sun et al (2006)

6.11.4.  Alarm classification.  The alarm classification was achieved using features from pulsatile 
signals that included: pulse-to-pulse interval, amplitude, maximum slope, signal quality, and 
rhythm. The classifier was developed based on set of heuristic rules specific to each alarm type.
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6.12.  Daluwatte et al (2016)

The focus of this article was on developing a better understanding between signal quality and 
false alarms. The authors developed arrhythmia specific quality indexes, and investigated if 
existing quality indexes can distinguish between true alarms versus noise. Two humans anno-
tated each ECG signal 10s prior to the alarm as either of high or low quality. Disagreements 
were not included in the analysis. The authors used 18 signal quality indexes from existing 
literature, and selected the top three algorithms from ROC analysis on the manually annotated 
data-set. The ECG beats were detected using the U3 transform (Paoletti and Marchesi 2006).

6.13. Tsimenidis and Murray (2016)

The article by Tsimenidis and Murray (2016) investigated the relationship between ECG qual-
ity and false alarms. The authors investigated the signal quality of ECG leads 8 s prior to the 
alarm event. They broke the analysis down into three frequency bands: low frequency from 
0.1–1 Hz, mid frequency from 10–20 Hz, and high frequency from 20–40 Hz. The ECG’s 
major power spectrum component was expected to be located mostly from 1–10 Hz. The 
authors report that the power on all the three frequencies was significantly greater for a false 
alarm versus a true alarm.

7.  Conclusions

In summary, the PhysioNet/Computing in Cardiology Challenge 2015 provided several key 
additions to the field of false alarm suppression in critical care. First we note that for the top 
performing entrants, it was the VTA alarm that proved the hardest to classify accurately. This 
is partly because, at low heart rates, the signal becomes ‘more normal looking’ in the other 
signals. This was previously noted in Aboukhalil et al (2008). To-date, there has been little 
to address this issue, although the current Challenge has made a move towards this. Second, 
we note that retrospective scores were generally higher than ‘real-time’ scores, with the high-
est performing retrospective approach only suppressing 1% of the true alarms, while 80% of 
the false alarms were suppressed. Although debatable, this may be acceptable as a clinical 
algorithm if a 30 s window were acceptable. We suggest that this may spur a re-consideration 
of the Association for the Advancement of Medical Instrumentation (AAMI) guidelines for 
maximum alarm latency. Third, we note that voting algorithms together can produce superior 
results to even the best algorithm. Such an approach can also lead to a more robust implemen-
tation, although it may be significantly more computationally intensive. It is also important to 
note that too many naive voters (more than 13 in the case of the 2015 Challenge) can reduce 
the accuracy of the label or answer. In Zhu et al (2014) and Zhu et al (2015) a voting system 
for algorithm (and human) annotations of physiological data was described, which incorpo-
rates both the physiology and the individual annotator’s accuracy as a function of objective 
features (such as signal quality) to produce a weighted voting scheme to guarantee that all vot-
ers add extra information. We suggest that such approaches will become ever more important 
as computational power becomes increasingly less expensive. We also note that this means 
that all competitors in the challenge added something to the final answer!

Finally we note some limitations of the competition. A larger database is needed with 
more patients, longer recordings, more leads and abnormalities (such as arrhythmias). We 
intend to work with industry and researchers alike to enhance the Challenge database in all 
these areas and would be grateful for continued contributions of data and source code, which 
we will post together with all the open source algorithms and annotated data from the 2015 
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PhysioNet/Computing in Cardiology Challenge. The latter can be found on PhysioNet’s 
website at http://physionet.org/challenge/2015.
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