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Abstract
We present generalizations of our previously published artificial models for
generating multi-channel ECG to provide simulations of abnormal cardiac
rhythms. Using a three-dimensional vectorcardiogram (VCG) formulation,
we generate the normal cardiac dipole for a patient using a sum of Gaussian
kernels, fitted to real VCG recordings. Abnormal beats are specified either
as perturbations to the normal dipole or as new dipole trajectories. Switching
between normal and abnormal beat types is achieved using a first-order Markov
chain. Probability transitions can be learned from real data or modeled
by coupling to heart rate and sympathovagal balance. Natural morphology
changes from beat-to-beat are incorporated by varying the angular frequency
of the dipole as a function of the inter-beat (RR) interval. The RR interval time
series is generated using our previously described model whereby time- and
frequency-domain heart rate (HR) and heart rate variability characteristics can
be specified. QT-HR hysteresis is simulated by coupling the Gaussian kernels
associated with the T-wave in the model with a nonlinear factor related to the
local HR (determined from the last n RR intervals). Morphology changes
due to respiration are simulated by introducing a rotation matrix couple to the
respiratory frequency. We demonstrate an example of the use of this model
by simulating HR-dependent T-wave alternans (TWA) with and without phase-
switching due to ectopy. Application of our model also reveals previously
unreported effects of common TWA estimation methods.

Keywords: electrocardiogram, ECG modeling, hidden Markov models, TWA,
T-wave alternans
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1. Introduction

This paper presents an extension of our previously described multi-lead electrocardiogram
(ECG) model (McSharry et al 2003, Clifford et al 2005, Clifford 2006, Sameni et al 2007)
to simulate the morphological dynamics of abnormal electrocardiographic rhythms. The
motivation for this model was to provide a set of standard signals for the ninth annual
PhysioNet-Computers in Cardiology Challenge (PCinCC) 2008 (Moody 2008), which aims
to improve the understanding of methods for identification and analysis of ECG T-wave
alternans (TWA). However, the general framework presented here is applicable to modeling
the dynamics and morphology of any set of beats or rhythm.

Macro-level TWA, first reported by Hering (1908), is defined as the beat-to-beat oscillation
of the amplitude of the T-wave that generally repeats every other beat. Microvolt TWA, first
reported by Adam et al (1981), is widely understood to be an important indicator of risk
of sudden cardiac death (Albrecht et al 1996). Although a variety of algorithms for TWA
quantification have been proposed, testing the limits of these algorithms in the context of
signal processing is difficult, since humans cannot score microvolt fluctuations, and it is
unclear whether normal subjects exhibit TWA (Kaufman et al 2000). Therefore, assembling
a population of test subjects is not possible. Moreover, testing TWA algorithms for varying
levels of noise and artifacts can be difficult, requiring clean data that have already been scored.
The existence of an accurate model for simulating the phenomenology of TWA therefore
permits an objective assessment of the flaws and strengths of such algorithms.

2. Methods

2.1. Dynamic VCG model

Following McSharry et al (2003), Clifford et al (2005), Clifford (2006), Sameni et al (2007),
and using a single dipole approximation for the cardiac potentials (Malmivuo and Plonsey
1995), the dynamics of the cardiac dipole vector d(t) = x(t)âx + y(t)ây + z(t)âz can be
modeled as
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where θ ∈ [−π, π ] is the cardiac phase (Sameni et al 2007), �θx
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instantaneous (beat-to-beat) heart rate in beats per minute (BPM), hav is the mean of the last
n heart rates (typically with n = 6) normalized by 60 BPM and ς

√
hav accounts for Bazett or

Fredericia-like corrections for ς = 2 and 3, respectively (Hodges 1997).
The first equation in equations (1) generates a circular trajectory rotating with the

frequency of the heart rate. Each of the three coordinates of the dipole vector d(t) is modeled
by a summation of Gaussian functions with amplitudes αx
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model for generating orthogonal lead vectorcardiogram (VCG) signals (Sameni et al 2007).
Moreover, the center of the Gaussian functions

(
θx
i , θ

y

i and θz
i

)
are selected such that the

R-peak is concentrated around θ = 0. Therefore, the cardiac phase θ , which linearly sweeps
the [−π, π ] range in each ECG beat, makes its transition from π to −π after the T-wave and
before the P-wave, i.e., in the isoelectric segment of the ECG. This transition point is later
used for switching between the different beat types.

The multi-channel ECG is then generated by

ECG(t) = H · R · � · s(t) + w(t), (2)

where ECG(t) ∈ R
N is a vector of the ECG channels recorded from N leads, s(t) =

[x(t), y(t), z(t)]T ∈ R
3 contains the three components of the dipole vector d(t), H ∈ R

N×3

corresponds to the body volume conductor model (or the inverse Dower transformation matrix
(Dower et al 1980)), � = diag(λx, λy, λz) ∈ R

3×3 is a diagonal matrix corresponding to the
scaling of the dipole in each of the x, y and z directions, R ∈ R

3×3 is the rotation matrix for the
dipole vector, and w(t) ∈ R

N is the noise in each of the N ECG channels at the time instant t.
Note that H, R and � matrices are generally functions of time.

2.2. Generating the RR time series

The base RR interval time series hb(t) is generated as per McSharry et al (2003), with a
baseline heart rate of 110 BPM, a standard deviation of 5 BPM and an LF/HF-ratio of 2 (see
McSharry et al (2003)). However, any reasonable variants of these parameters can be chosen.

For the PCinCC 2008 (Clifford and Sameni 2008), we used hr(t) = ρ tanh[κ(t − t0)] + υ,
where the parameters ρ, κ , t0 and υ are arbitrary variables that control the shape and location of
the ramp and by selecting these parameters as random variables, a randomly-seeded heart rate
(HR) time series was generated. For later simulations, we adopt ρ = 10 BPM, κ = 0.1 s−1,
t0 = 140 s and υ = 0. No ectopy, respiration or heart rate turbulence (HRT) dynamics were
present in the data.

2.3. VCG generation: normal and abnormal beats

The dipole model in equations (1) is very generic and by using sufficient numbers of Gaussian
functions, it can be used for synthesizing, both, normal and abnormal beats. Depending on
the type of abnormality, abnormal beats can either have a totally different morphology, as
compared to normal beats, or may have minor differences in specific parts. For example,
in some of our simulations for generating realistic TWA time series, the normal beats were
modeled with 11 Gaussian functions and abnormal beats (every second beat in the TWA time
series) were generated by adding an offset to the 11th Gaussian amplitude (α11). Alternatively,
for the data in the PCinCC 2008, the αi in equations (1), were modified to λαi for i = 9, 10
and 11. The diagonal matrix � is generally a three-dimensional quantity corresponding to
each of the three VCG planes (Vx, Vy and Vz). To mimic the observation by Martı́nez and
Olmos (2005) that there is a preferred plane of TWA activity, we arbitrarily forced the scaling
to be different in each plane (λx = 2λy = 3λz). Twelve different levels of TWA activity were
then generated (1 μV � TWA amplitude � 40 μV).

Figure 1 illustrates an example of the resultant VCG with a sampling frequency of
500 Hz. Figure 2 illustrates the ‘ABAB’ phenomenon of the resulting TWA effect with an
offset amplitude of 23 μV, and figure 3 illustrates the effect of the T-wave alternation from
beat to beat.
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Figure 1. Example of VCG generated by the model from equations (1).

Figure 2. Typical alternating ‘ABAB’ TWA pattern (with TWA amplitude of 23 μV) generated
from our model.

2.4. State transition matrix for TWA HR dependence

The transition from one beat type to another can be modeled within a probabilistic framework
using a first-order Markov chain5. Considering each beat (normal or abnormal) as a state, the

5 The assumption of a first-order Markov chain is only to simplify the training of the model parameters from relatively
short data sets. Generalization to higher-order Markov chains is straightforward.
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Figure 3. Multiple ST-T segments from two beat classes taken from one of the VCG projections.
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Figure 4. State transition graph between normal (N) and abnormal (A) beats using a first-order
Markov chain. The graph can be extended to more abnormal beat types.

state transition matrix (STM) is defined as follows:

STM =
[
p11 p12

p21 p22

]
(3)

where, as shown in figure 4, the pij (0 � pij � 1) are the transition probabilities from normal
(N) to abnormal (A) beats and vice versa. For the TWA application we chose a symmetric
formulation, STM = [1 − p p;p 1 − p], so that the probability of transition of normal to
abnormal beats is the same as the probability of transition from abnormal to normal. (Also,
to follow the convention of TWA, the two beat types are denoted A and B, although both are
strictly abnormal.) In general this may not be true, since for some patients, the prevalence
of ectopic beats may be biased toward runs of ectopy, rather than isolated ectopic beats. For
TWA we have two extremes: stationary continuous TWA and normal sinus rhythms, which
are achieved by setting p = 1 and p = 0, respectively. Of course, the STM has the same rank
as the number of beat types and a similar probabilistic framework may be used for generating
more than two beat types (see figure 5). Equation (3) then takes on the dimension of the
number of beat types.

It is known that cardiac abnormalities such as the TWA are more probable in higher heart
rates (Narayan 2006). Therefore, to simulate the dependence on HR of the TWA effect, we
modify p to

p(t) = (tanh[ϑ(h(t) − hTWA)] + 1)/2, (4)
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Figure 5. State transition graph between normal (A), abnormal (B) and ectopic (V) beats using a
first-order Markov chain.

Figure 6. Example of instantaneous heart rate and resultant probability of transition to TWA.

where h(t) is the instantaneous heart rate defined in equation (6), hTWA = 95 ± 5 BPM is the
typical HR range at which the TWA effect manifests, and ϑ = 0.2 BPM−1 controls the typical
slope of transition. Furthermore, we require 0 � p(t) � 1 to satisfy the requirements of a
probability function.

Figure 6 illustrates an example of instantaneous heart rate and the resultant probability of
transition to TWA derived from such a procedure. Note that as the instantaneous heart rate
rises above 110 BPM, the transition probability saturates to unity (corresponding to continuous
stationary TWA).

The STM is used to generate random states for switching between different beat types.
Following the VCG model presented in section 2.1, to generate synthetic ECG, the state
transition (or the choice of beat type) is made at the point of phase wrapping, where the
cardiac phase θ jumps from π to −π .
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Figure 7. ‘ABAB’ beat sequence followed by a phase-changing ectopic beat (V). Note that the
beats following the ectopic beat will now be of a ‘BABA pattern’.

2.5. Modeling the effect of ectopy

To add ectopic beats into the model, three steps are necessary. First, a new morphological
representation of the dipole is required (by fitting Gaussians in the three VCG dimensions to
a known ectopic beat recorded in a VCG). Second, the ectopic beat must be placed earlier
in the RR interval sequence. In the case of a premature ventricular beat, this is achieved by
shortening the RR interval by between 10% and 30% (Clifford et al 2002) (and lengthening the
following RR interval by a corresponding amount). The exact amount by which the two RR
intervals are modified is determined by sampling from a uniform distribution. Third, the STM
must become a three-by-three to represent the probabilities of transition from an A-type beat to
a B-type, from an A-type to a V-type (ectopic beat) and from a B-type to a V-type beat, and vice
versa. The probability of no change in beat type must also be programmed into the sequence
(see figure 5). The STM effectively dictates whether there will be a TWA phase transition
after an ectopic beat. For example, if P(B|V) is much greater than P(A|V), when P(V|B) is
much higher than P(V|A), then as an ectopic beat occurs, a phase transition is likely6. That
is, we see an ‘ABABVBABA’ sequence rather than an ‘ABABVABAB’ sequence. Similarly,
if the P(A|V) is much greater than P(B|V), when P(V|A) is much higher than P(V|B), then a
symmetrical phase transition is likely. That is, we see a ‘BABAVABAB’ sequence rather than
a ‘BABAVBABAB’ sequence.

Figure 7 illustrates the effect of an ectopic beat in the ‘ABAB’ beat sequence, whereby a
phase change results and the following beats exhibit a ‘BABA’ pattern.

2.6. Adding the effect of respiration

Recall from equation (2) that the no-noise ECG can be represented from the product
H · R · � · s(t). Although the product H · R · � may be assumed to be a single matrix,

6 P(X|Y) denotes the probability of transition from X to Y.
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the representation in equation (2) has the benefit that the rather stationary features of the body
volume conductor that depend on the location of the ECG electrodes and the conductivity of
the body tissues can be considered in H, while the temporal inter-beat movements of the heart
can be considered in � and R, meaning that their average values are identity matrices in a
long-term study: E{R} = I and E{�} = I .

However, on a short-term timescale (a few seconds), � and R represent the translation
and rotation of the heart with respect to the sensors as the subject breathes in and out. R can
therefore be modified by the Givens rotations (Sameni et al 2007), with a time-varying angle,
φ as described by Astrom et al (2000).

The angular variation around each axis is modeled by the product of two sigmoidal
functions reflecting inhalation and exhalation, such that for lead X the rotation angle (in
degrees) is defined at the nth sample index as

φX(n) =
∞∑

p=0

ζX
1

1 + e−�i (p)(n−κi (p))

1

1 + e−�e(p)(n−κe(p))
, (5)

where

�i(q) = 20
fr(q)

fs

, κi(q) = κi(q − 1) +
fs

fr(q − 1)
, κi(0) = 0.35fs,

�e(q) = 15
fr(q)

fs

, κe(q) = κe(q − 1) +
fs

fr(q − 1)
, κe(0) = 0.6fs,

q denotes each respiratory cycle index, 1/�i(q) and 1/�e(q) are the duration of inhalation and
exhalation, respectively, κi(q) and κe(q) are the time delays of the sigmoidal functions, fs is
the sampling rate, fr(q) is the respiratory frequency and ζX is the maximum angular variation
around lead X, which has been set to 5◦. The same procedure is applied to leads Y and Z, with
ζY = ζZ = ζX.

The VCG, V, is therefore transformed on a sample-by-sample basis with the three-
dimensional rotation matrix R(φ) which leads to realistic amplitude variations in each axis
that manifest as the familiar QRS area or RS amplitude variation (Baı́lon et al 2006). The
entire VCG is then generated using equation (2). Figure 9 illustrates the effect of adding
respiration in this manner.

Note that for the simulated data in the PCinCC 2008, we set � = I , in order to contain
all movement with respect to the sensors in the R matrix. Note also that the inverse Dower
matrix, H, is not square and therefore generates a more numerous set of leads than the existing
VCG as described in the next section.

2.7. Generation of full 12-lead ECG

To generate five different artificial patients, we used the model parameters in Sameni et al
(2007) and derived a set of five individual Dower transforms (IDTs) (Dower et al 1980)
using the first five patients in the Physikalisch-Technische Bundesanstalt Diagnostic ECG
Database (PTBDB) (Bousseljot et al 1995, Kreiseler and Bousseljot 1995). We denote these
matrices by Hj, where j = 1, 2, . . . , 5. The PTBDB consists of 549 records from 290 subjects
with 15 simultaneously measured signals: the conventional 12 leads (I, II, III, AVR, AVL,
AVF, V1, V2, V3, V4, V5, V6) together with the 3 Frank lead ECGs (Vx, Vy, Vz). The
individual (3 by 12) Dower matrix is derived from a nonlinear least square optimization fit
(Marquardt 1963) between the VCG and the 12 ECG leads, using the first 10 s of each patient.
Although such a method ignores the changes in the IDT from beat to beat due to respiration,
morphological changes due to respiration are already accounted for in the model, using a
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Figure 8. Example of 12 lead ECG after application of IDT.
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Figure 9. Example of the x-axis of a generated VCG (fs = 500 Hz) with added respiratory effect
(upper plot). A low frequency modulation of the R-peaks at the respiratory frequency (fr = 16
breaths min−1) is evident (lower plot). Note that the TWA effect (48 μV) is also modified by the
respiration so that the ABAB sequence is no longer uniform.
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Figure 10. Logical flow of processes required to generate the abnormal rhythm model.

Bazett-like correction (McSharry et al 2003) to the Gaussian parameters. Application of each
IDT to the VCG, together with randomized seeds for the RR interval generation, provides
12-lead ECG for the five different patients.

The complete logical flow of the process required to generate the abnormal rhythm model
is given in figure 10. Note that the RR generation procedure, beat morphology modeling,
state probability transmission and multi-lead generation (through the IDT) are all separate
processes that can be replaced by any other reasonable model. In particular, the RR interval
time series generation can be altered to mimic any particular activity or event.

2.8. Generic biophysical modeling

As we described in Clifford and McSharry (2004) and Clifford (2006), the model presented here
is quite general for replicating quasi-periodic activity, particularly for biomedical applications.
The transition probabilities can be learned from recorded data of an individual or a population.
Furthermore, the model may be extended to incorporate other models of RR interval variation,
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Figure 11. Performance of SM (upper) and MMA method (lower) for TWA estimation with no
noise or respiration (left) and 20 dB realistic noise (right).

and extended to other quasi-periodic signals. One obvious extension to this model is that
of blood pressure, where inter-beat variations in pulse morphology can follow a Markov
chain-like variation.

3. Results

In order to evaluate our simulator we used visual inspection to empirically verify the TWA
amplitudes with no QT variation. In tests we generated TWA amplitudes of 2, 3, 4, 5, 6, 7, 8,
10, 11, 12, 20, 30 and 40 μV for each of the five artificial patients, with the rotation matrix,
R, set to be the identity matrix.

The generated 12-lead ECG for one of the realizations of this model is illustrated in
figure 8 and the corresponding VCG from which this 12-lead example is derived (using the
IDT) is illustrated in figure 1.

The overall logic flow for generating our multi-lead ECG model with abnormal and
normal beats is illustrated in figure 10. Using the winner of the open-source division of the
PCinCC 2008 (Khaustov et al 2008), we found that our model faithfully reproduced TWA
activity at all input levels. This is as expected, since the model mathematically guarantees this
effect.

However, when we examined the performance of traditional TWA estimators, such as the
modified moving average (MMA) (Verrier and Nearing 1994, Nearing and Verrier 2002) and
the spectral method (SM) (Adam et al 1981, Albrecht et al 1996) (also using open source
algorithms from the PCinCC 2008 (Khaustov et al 2008)), we found discrepancies at both
low and high TWA levels. Figure 11 (left) illustrates the performance of the SM (upper plot)
and MMA method (lower plot) in estimating TWA from our simulator. Note that the SM
consistently underestimates the actual value of the TWA amplitude. Note also that the MMA



606 G D Clifford et al

method produces a false TWA amplitude of 5 μV ± 5 μV TWA when there is actually no
TWA present.

Moreover, when noise was added, either as independent background noise or as
physiological variability (due to respiratory influence for example, with R �= I ), the TWA
activity can be seen to cause false-negative and false-positive detections in some detectors,
because some natural T-wave morphology variation exists, particularly over the respiratory
cycle. Figure 11 (right) illustrates the effect of the SM (upper plot) and MMA method (lower
plot) at 20 dB background noise. (The noise was taken from the Noise Stress Test Database
on PhysioNet (Goldberger et al 2000).) Note that the noise floor (at 0 μV) has risen, causing
false triggering in both estimation methods.

4. Model limitations and future work

Besides the baseline rhythms, the RR interval can also be influenced by sudden increases
or decreases, long-term variations in the order of minute or higher, and state-dependent
phenomena such as heart rate turbulence (Bauer et al 2006) (a rapid acceleration and
deceleration after an ectopic beat (Bauer et al 2006)). These effects have not been explicitly
added to the model, but can simply be achieved by adding additional terms to the base RR
interval time series:

h(t) = hb(t) + hr(t) + hHRT(t) + · · · , (6)

where hr(t) is a function that models the long-term variations of the RR interval, hHRT(t)

models the HRT phenomenon and h(t) is the resulting time-varying RR interval time series,
which forms the input for ω in equations (1).

HRT after an ectopic beat is characterized by an increase of HR followed by a decrease
back to the baseline rate (Bauer et al 2006). Therefore, we selected hHRT(t) = h0(t) ∗fimp(t),
where h0(t) is the difference of two log-normal shapes to model the HRT, ∗ represents the
convolution operator and fimp(t) is an impulse function that is fired whenever we reach an
ectopic (V-type) beat.

However, we do not model the sympathetic and parasympathetic changes that occur during
HRT. In fact, dynamic CNS coupling to our model is not modeled at all. Since a HR increase
is likely to be due to either a parasympathetic withdrawal, or sympathetic innervation, or a
combination of both, we should couple the LF-HF ratio to HR in a nonlinear manner. Although
this would be fairly simple in the context of our model, picking the correct relationship is
not trivial. A likely approach would be to introduce a model such as that of DeBoer (deBoer
et al 1987), to allow the coupling of HR and heart rate variability (HRV), though this does not
address the need to couple the effects of HR, HRV and arrhythmias.

Evidence does exist that the sympathetic nervous system is capable of a direct
arrhythmogenic influence on the ischemic myocardium independent of the heart rate (Euler
et al 1985), although an exact mathematical relationship has not been defined. The existence of
TWA in patients with congenitally long QT syndrome, which can be exacerbated or provoked
by excitement or emotional or physical stress, suggests that sympathetic stimulation may be
important to the mechanism of TWA (Schwartz and Malliani 1975, Verrier et al 1992, Euler
et al 1996, Estes et al 1997, Hohnloser et al 1997). However, since the effect is still
controversial, and some authors have demonstrated that TWA is mostly a HR-related effect
(Kaufman et al 2000), we have not included any explicit coupling of the TWA activity with
the sympathetic nervous system in our model.

Moreover, by employing a HMM, it is possible to learn the exact dynamics from a given
patient, or a population, and avoid the question of having to build an exact model of these
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relationships. In fact, if we know that HR is a large influence on the transition matrix, we
may explicitly add HR into the state vector and learn the state transition matrix with the HR-
dependence included. Give the above observations of HRT, it is likely that the rate of change
of HR should also be included in the state, so that a given beat, at a given ω and �ω/�t ,
has a transition probability to another beat type, ω and �ω/�t . Of course, modifications
are required to quote with a HMM that has a mixed state space consisting of continuous and
discrete parts.

We also note that variations in TWA amplitudes are introduced by changing the value of
� in equation (2). Although this appears to be a time-independent vector which scales the
dipole, � could be a time-varying parameter that is coupled to the heart rate, for example,
which increases in magnitude at higher heart rates. Gradual changes could also be coupled
to specific interventions such as balloon inflations. This would reflect the observations by
Martı́nez et al (2006) that TWA amplitudes vary gradually over time.

5. Discussion and conclusions

The dynamic model presented in this paper is fully generalizable, using an optimization
procedure to fit the VCG to any given subject or observation to an arbitrary level of
accuracy. The rotating dipole vector model presented here is rather general, since the universal
approximation property of Gaussian mixtures means that any continuous function (as the dipole
vector is assumed to be so) can be modeled with a sufficient number of Gaussian functions up
to an arbitrarily close approximation (Ben-Arie and Rao 1995). Each beat class can be fitted to
real examples separately, and the probability transition matrix that determines how likely it is
for one beat type to follow another can be derived from empirical studies of known databases.
The STM is coupled to heart rate, but can also be coupled to autonomic tone, sleep state or any
other relevant input parameter. Therefore, abnormal beats such as ectopy can be simulated by
using new beat classes (fitted in the same manner as the derivation of the IDT), and adding an
appropriate shortening of the associated RR interval. Each new beat class increases the rank
of the STM by one. An appropriate transition probability between this new beat and other
beat classes can be derived by training the HMM on real databases.

Since our model employs a dipole representation, with a Dower-like transform to map the
dipole back onto clinical observational axes (such as the standard 12-lead ECG), correlated
noise can be added in multiple dimensions, and hence can manifest in a realistic manner on all
observational ECG leads. Multiple noise sources can be treated as other dipole moments in the
model, and the relative motions of sources and sensors can be simulated using a Givens rotation
matrix to multiply the IDT (Sameni et al 2007). Finally, clinical features of the simulated
signal can be extracted directly from the model (Clifford 2006, Clifford and Villarroel 2006)
to provide a gold standard for evaluating signal processing algorithms.

As an illustration of the application of the model presented in this paper, we evaluated
two standard TWA metrics. Results demonstrate that intrinsic systematic errors exist in both
metrics. In particular, for small TWA amplitudes (�10 μV), both methods overestimate or
falsely trigger, even at extremely low (or no) noise level. This effect may partly explain
observations that ‘natural’ TWA activity of normal subjects of up to 10 μV has been reported
in healthy subjects (Kaufman et al 2000). Note also that the noise floor at which TWA
activity is falsely recorded rises as the background noise rises. Therefore, during periods of
elevated noise (such as during exercise, when the HR is elevated and TWA are reported as
more common), we expect to see more false episodes of TWA, and an overestimation of the
overall magnitude of the effect. Such issues should be factored into the clinical employment
of these algorithms, and adjustments made accordingly. For example, it is common to employ
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statistical methods to reject TWA activity that may have been generated by noise alone.
However, such techniques generally assume stationary noise, and pick quiescent periods in
which the ‘no-TWA’ baseline noise level can be determined. Our simulations indicate that this
is likely to lead an overestimation of the magnitude of the TWA activity at low levels.
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