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Abstract

Extensions are presented to a previously described
realistic nonlinear model of the electrocardiogram to
account for T-wave asymmetry. By fitting the parameters of
this model using a nonlinear optimization, we demonstrate
that an arbitrary ECG can be modeled and consequently
in-band noise can be completely removed. We also show
that the fitting procedure effects a compression at a rate
of (

�������������� : � ) per beat or ( � �� �!����"�#�$� : � ), where %&% is the
reciprocal heart rate, ')( is the sampling frequency, and *
is the number of symmetric features (or turning points) and+ the number of asymmetric features used to fit the beat
morphology. Performance tests show that the algorithm
can run in real time on a modern desktop PC. Finally we
demonstrate that by clustering the parameters, waveform
classification is possible.

1. Introduction

Conventional ECG filters are limited by their generic
applicability, in that they use only a vague knowledge of
the expected frequency band of interest and use almost no
information concerning either the general morphology of an
ECG, or a patient specific template. Adaptive filters have
been proposed [1, 2] which require another reference signal,
or some ad-hoc generic model of the signal as an input. In
this paper an alternative filtering paradigm is proposed which
uses a patient specific model of the ECG, yet requires no
prior knowledge of the morphology and only one channel of
the ECG.

By fitting a modified version of a previously described
model [3] to each beat, and constraining the fit with a time-
averaged template, a filtering of each beat is performed.
The model consists of a sum of Gaussians centered on each
wave of the ECG (P, Q, R, S and T). Each Gaussian is fully
specified by three parameters; location in time, amplitude
and broadness. Therefore, the representation of the ECG as
a series of Gaussians is also a form of (lossy) compression.
Finally, the parameters for each beat can be compared to a
normal set of parameters and a classification made.

This paper presents the general framework for the
methodology described above, illustrated with the fitting
of both real and artificial beats in noiseless and noisy
conditions. A discussion of compression and classification
applications is given and future research directions,
including real time considerations.

2. Methods

2.1. The signal model

The general model under consideration has previously
been described by the authors in [3, 4] in its application
to modeling the ECG, blood pressure and respiratory
waveforms. In essence, each feature of the ECG ( ,.-0/01
& 2 ) is described by a Gaussian with three parameters;
the amplitude 354 , width 6�4 and phase 7�498 :<;>=�?@4 (or
relative position with respect to the R-peak). The vertical
displacement of the ECG, A , is described by an ordinary
differential equation,

BA CD354FE 6�4GE 7�4IHJ8 K L4NM!OGPRQ S)Q TUQ V!Q W�X Q W Y Z3!4I[\7�4I]
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(1)

where [e7�4f8gCD7fKh7<4iH , the relative phase. Note that noA -offset exists as the model-fit assumes Aj8lk at the iso-
electric level. Numerical integration of this equation using
appropriate set of 354 , 6�4 and 7<4 leads to the familiar ECG
waveform. In this paper we present a formal method for
deriving these parameters on a beat-by-beat basis. The times
and angles are specified relative to the position of the R-peak
and are detailed in Table 1.

Furthermore, an optional extra parameter has been added
to the 2 feature, denoted by a superscripted K or m , to
indicate that they are located at values of 7 (or ? ) slightly
either side of the original 7 4 . By using two sets of n�3 4 E 6 4 E 7 4Fo
to represent a particular feature, an asymmetric turning point
may be formed. Although this is particularly important for
the T-wave on the ECG, it is of negligible importance for the
other four features in the ECG. This paper therefore adopts
the convention that only 6 features are required for the ECG;, , - , / , 1 , 20p and 2 � .



Table 1. Initial (superscript zero) and final-fit model
parameters (1). � 8 � %&% . Random offsets not shown.

Index (i) , - / 1 20p 2 �
Time (s) -0.14 ���a -0.05 � 0 0.03 � 0.20 0.287��4 (rads) -0.90 � �a -0.31 � 0 0.20 � 1.25 1.743�� 4 1.2 -5.0 30.0 -7.5 1.2 1.26�� 4 10 10 10 10 10 10
Time (s) -0.14 � �a -0.05 � 0 0.03 � 0.20 0.287<4 (rads) -0.90 ���a -0.31 � 0 0.20 � 1.25 1.74354 1.25 -4.7 30.1 -6.9 1.65 1.986 4 11.6 14.8 13.6 12.1 13.7 11.3

2.2. Fitting parameters to the model

One efficient method of fitting the ECG model described
above to an observation �!CN?FH , is to minimize the squared error
between the ��CD?FH and A . That is, we wish to find

	�
�� b Q � b Q � b�� �!CN?FHUK ARCD?FH ���� (2)

over all six � , with ?@4 8 :<;>=<7<4 . Fortunately, we
can analytically integrate (1) to give A CD3 4FE 6 4@E ?@4IH 8� 4 :�354d[\7�4�������C@K [\7 �4 =�:�6 �4 H . Equation (2) can then be
solved using an eighteen-dimensional gradient descent in the
parameter space. The Matlab function lsqnonlin.m performs
the required implementation of this nonlinear least-squares
optimization.

2.3. Preprocessing and initialization

To minimize the search space for fitting the parameters
( 3 4 E 6 4 E and 7 4 ), a simple peak-detection and time-aligned
averaging to form an average beat morphology template is
formed over at least the first 60 beats centered on their R-
peaks. (The template window is unimportant, as long as it
contains all the ,.-0/01 2 features and does not extend into
the next beat). Cross correlation is then performed between
each beat and the template to remove outliers (with a linear
cross-correlation coefficient less than 0.95). (See [5] for
details and a justification of this method). If more than 20%
of the beats are removed, then another 60 beats are allowed
into the average template, and the outlier rejection procedure
is re-iterated. When less than 20% of the beats are discarded,
another average template is then made of the remaining
beats. Peak and trough detection is then performed on this
template (using refactory constraints for each wave) to find
the relative locations of the turning points in time (and hence
the 7 4 ). 2.p and 2 � are initialized ����k ms either side of7 W . By measuring the heights of each peak (or trough) an
estimate of the 3 4 can also be made. Each 6 4 is initialized
with a value � kem �"! .where ! is a uniform distribution on
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Figure 1. Original ECG, model fit, and residual error.

Figure 2. Movement noise filtered by model.

the interval # k`E%$$$�E ��& . Each of the 3 4 and 7<4 , shown in table
1, were initialized with random perturbations of ! and :�k'!
respectively.

Note that it is important that salient features that one
wishes to fit (the P-wave and QRS segment in the case
of the ECG) are sampled at a high enough frequency to
allow them to contribute sufficiently to the optimization. In
empirical tests we found that all ECGs below approximately
512Hz required upsampling (with an appropriate anti-
aliasing filter). This corresponds to about 30 sample points
in the QRS complex. Using less than 30 samples in a
wave can lead to some extremely bizarre fits that fulfill the
optimization criteria.

Figure 1 illustrates a real beat (recorded from a V5 lead on
the first author), a typical fit to a template of real beat, and
the residual error.



Figure 3. Electrode pop noise filtered by model.

3. Results

Fig. 2 illustrates the results of fitting the model to a
segment of ECG cleanly recorded from the author, and
contaminated by electrode motion noise (taken from the
Physionet Noise Stress Test Data Base [6]). Note that despite
the significant waveform distortion, the locations of the , ,- , / , 1 and 2 peaks match the underlying (uncorrupted
signal) to sub-sample precision, even with ( ' (�� � kHz).
Note also that the the error around the iso-electric point
and ST-level are negligible in a clinical sense ( � k�$ � mV, or
about 5% to 10% of the QRS amplitude for a sinus beat on
a V5 lead). (Amplitudes have been scaled by an arbitrary,
but consistent factor). Fig. 3 illustrates the performance
of this model-based filtering method in the presence of a
nonstationarity. In this case the noise is white and Gaussian,
except for a series of impulses (pop noise) on the ST-segment
with an amplitude half that of the QRS complex. Note
that the residual error around the ST-segment is extremely
small. In contrast to this, conventional filters are unable
to effectively remove such impulses, leading merely to a
smoothing of the sharp edges. Although such filters perform
the filtering much more rapidly, execution time on a moder
desktop PC is less than half a second, making this a possible
real-time technique.

4. Discussion

4.1. Filtering

Filtering of the ECG by fitting equation 1 to small
segments of the ECG around each QRS-detection fiducial
point is an excellent way to provide an idealistic (zero-noise)
representation of the morphology which captures much of
the clinical information of that beat. In fact, this approach

could be generalized to any band-limited waveform with
fewer than ' ( oscillations per sample. In particular, the
signal we are representing does not need to be periodic and
is therefore particularly suited to biomedical signals. Since
the model is a compact representation of oscillatory signals
with few turning points compared to the sampling frequency,
it therefore has a band pass filtering effect leading to a lossy
transformation of the data into a set of integrable Gaussians
distributed over time.

4.2. Compression performance

The fitting procedure effects a (lossy) compression at

a rate of (
� ���� : � ) per beat or ( � �� � �

� : � ), where %&% is the
reciprocal of the (average) heart rate, ')( is the sampling
frequency, and � 8 * m : + is the number of features or
turning points used to fit the heart beat morphology (with* symmetric and + asymmetric turning points). For a
low ECG sampling rate of 128Hz, this translates into a
compression ratio greater than 7:1 at a heart rate of 60bpm.
However, for high sampling rates ( ')( 8 ��k�:�� ) this can lead
to compression rates of almost 57:1. Reducing � from the
full representation of � 8 ��� is often appropriate for tasks
which require only the QRS complex ( � 8	� ) or the ST-
segment ( � 8 ��: ) to be analyzed. Of course, high heart rates
will reduce this compression unless the dynamic properties
of the model are used to encode the heart rate-dependent
variations through dynamic shifts in the values of the 3`4 , 6 4
and 7<4 . For a given segment of 
 seconds with an average
heart rate of � �� � , the compression ratio rises by a factor ��R� .
Of course, the model is just an approximation and therefore
the compression becomes even more lossy. One should also
note that no explicit accounting of abnormal beats has been
made in these calculations and a new set of parameters must
be derived, possibly for each new abnormal beat encountered
in the ECG record.

4.3. Parameter clustering for classification

Although classification of the waveform in terms of the
values of 3 4 , 6 4 , and 7<4 has not been explored in-depth
in this paper (that is a full paper in its own right, which
will follow in the future), preliminary results indicate that
the clustering of normal beats in this 18-dimensional space
is tight enough to allow separation between beat types
(and even artifacts). However, two important questions
remain unresolved. Firstly, we must normalize for heart-rate
dependent morphology changes. This may prove relatively
trivial since the model itself incorporates an heart rate-
dependent shift in the n�3 4 E 6 4 EG7 4@o in the factor, � (see
table 1). Secondly, clustering for beat typing is dependent
on population morphology averages for a specific lead
configuration. Not only would different configurations lead



to different clusters in the 18-dimensional parameter space,
but small differences in the exact lead placement relative to
the heart would cause an offset in the cluster. A method
for determining just how far from the standard position the
recording is, and a transformation to project back onto the
correct position would be required. One possibility could
be to use a procedure designed Moody et al. [7] for their
ECG classifier Aristotle. In their approach, the beat clusters
are defined in a Karhunen-Loève (KL)-space and therefore
an estimate of the difference between the classified KL-
space and the observed KL-space is made. Classification
is then made after transforming from the observation to
classification space on which the training was performed.

5. Conclusion

A technique for simultaneously filtering, compressing and
classifying the ECG has been described which can work
in real time on a modern desktop PC. By fitting a set of
six Gaussians, each specified by three parameters in an
ordinary differential equation, and performing a constrained
nonlinear optimization, we demonstrate that in-band noise
can be completely removed. One advantage of using prior
knowledge concerning beat morphology is that a fitting error
can be calculated with respect to the model, and thus we have
an in-line measure of how well the procedure has filtered the
ECG segment. By measuring the distance between the fitted
parameters and pre-trained clusters in the 18-dimensional
parameter space, classification is possible. However, as
with all classifiers, there are two potential problems with the
method detailed in this paper. Firstly, if a non-parameterized
beat is encountered, it will be considered to be an artifact.
Secondly, if an artifact closely resembles a known beat, it
will obviously have a good fit to the known beat. Therefore
setting tolerances on the acceptable magnitude of the error
will prove crucial, and a test over a set of labeled databases
is required. This need is closely allied to the requirements of
a classifier in general.

It should be noted that the real test of the filtering
properties is not the residual error, but how distorted the
clinical parameters of the ECG (such as the ST-level and QT-
interval) really are and whether they cause a normal beat to
be abnormally classified as a normal beat. This analysis will
be included in a follow-up paper. The method of producing
confidence intervals for a particular fit, or classification is an
important step in determining the performance of particular
algorithm (see Hughes et al. [8]). In-line methods such
as these will facilitate the robust interpretation of data and
algorithms, reducing the number of false alarms that are
triggered. In particular, the smooth nature of the fitted
waveform allows for simple and robust detection of clinical
features such as the iso-electric point, QT-interval, and ST-
level. The residual error from the fitting procedure then

provides a confidence measure for the model-derived values
of these features.

Our previously published model has been generalized to
allow modeling of turning points which exhibit asymmetries
(such as the T-wave) by allowing such a feature to be
described by two Gaussians. The model as such, can now
be used to represent any waveform. However, the model
complexity increases considerably for stochastic processes
which inherently have many fluctuations compared to the
sampling frequency. The main utility of the method detailed
in this paper lies in the fact that the model represents
smooth oscillations with few turning points compared to the
sampling frequency, and therefore has a band pass filtering
effect leading to a lossy transformation of the data into
a set of integrable Gaussians distributed over time. Each
clinical feature of the ECG waveform is represented by a
known and limited set of parameters. This allows for a very
compact representation of the ECG morphology and makes
the description mathematically tractable and completely
generalizable to any semi-periodic signal.
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