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Abstract

By fitting a previously published nonlinear model for

generating realistic ECG to waveforms collected from

a healthy human subject, and using a nonlinear least-

squares optimization procedure, the authors demonstrate

that significant points (P, Q, R, S, and T) on the ECG can

be determined to an arbitrary accuracy. The model-fitting

routine runs in real-time on a 3GHz PC. Coloured (1/fβ)

noise is then added to the ECG in order to evaluate the fit-

ting accuracy under a variety of recording conditions. A

method for determining noise levels (and colour) in real

ECGs using the residual of a singular valued decomposi-

tion is described. Furthermore, a method for evaluating

the filter is described which allows an application-specific

evaluation of the filter in terms of the distortion in the

QRS width and amplitude, the ST-level, the QT interval,

the PR-interval, and the fiducial point location. Using

these methods, the model-based filter is shown to intro-

duce insignificant clinical distortion in the QT interval and

QRS width down to an SNR≥ 0dB for β < 2. The fidu-

cial point location is shown to be insignificantly distorted

(< 1ms) for an SNR≥ 2dB, and the ST-level is stable down

to SNR> 12dB. PR interval is more sensitive to noise due

to the low amplitude nature of the P-wave. In general, the

filter performance is degraded by increasing β.

1. Introduction

Existing techniques for filtering and segmenting ECGs

are limited by the lack of an explicit patient-specific model

to help isolate the required signal from contaminants. Only

a vague knowledge of the frequency band of interest and

almost no information concerning the morphology of an

ECG are generally used. Previously proposed adaptive fil-

ters [1, 2], require another reference signal, or some ad-hoc

generic model of the signal as an input.

In this paper a gradient descent method for deriving the

parameters of a previously described realistic ECG model

[3] on a beat-by-beat basis for an arbitrary ECG is detailed.

This represents an alternative filtering paradigm wherein a

patient specific model of the ECG is used to form a noise-

free representation of a subject’s ECG. No prior knowledge

of the morphology and only one channel of the ECG is

required. Furthermore, the locations of each peak, plus

their onsets and offsets can be completely known and beat

segmentation is therefore possible.

A method for calculating the noise power and colour in

an ECG based on Singular Value Decomposition (SVD) is

then presented, followed by a assessment of the fitting per-

formance as a function of noise power and colour for stan-

dard clinical parameters (surrogates for the PR-interval,

QT-interval, QRS-width, ST-level and RS-amplitude). Us-

ing this method, a researcher can then a priori predict the

performance of the model-fit for a given ECG segment

and for a particular clinical application, hence facilitating

the automatic rejection of beats where the clinical distor-

tion may be significant. Illustrations of applications of the

model-fitting procedure, including ECG segmentation, fil-

tering, compression, classification are then discussed. Fi-

nally a discussion of possible improvements is presented.

2. Methods

2.1. The signal model

The model presented here is essentially a non-dynamic

version of our original model [3, 4] with the inclusion

of one extra parameter per asymmetric wave (only the T-

wave in this paper). Each symmetrical feature of the ECG

(P ,Q,R, & S) is described by a Gaussian with three pa-

rameters; the amplitude ai, width bi and phase θi = 2π/ti
(or relative position with respect to the R-peak). Since the

T -wave is often asymmetric, it is described by the sum of

two Gaussians (and hence 6 parameters) and is denoted by

a superscripted − or +, to indicate that they are located at

values of θ (or t) slightly either side of the peak of the T -

wave (the original θT for a for the symmetric model). The



vertical displacement of the ECG, z, from the isoelectric

line (at an assumed value of z = 0) is then described by an

ordinary differential equation,

ż(ai,bi,θi) = −
∑

i∈{P,Q,R,S,T−,T+}

ai∆θie
(
−∆θ

2
i

2b2
i

)
(1)

where ∆θi = (θ − θi), the relative phase. Numerical inte-

gration of this equation using appropriate set of ai, bi and

θi leads to the familiar ECG waveform.

2.2. Fitting parameters to the model

One efficient method of fitting the ECG model described

above to an observation s(t), is to minimize the squared

error between the s and z. That is, we wish to find error

εr = min
ai,bi,θi

‖s(t) − z(t)‖2
2 (2)

over all six i. Fortunately, we can analytically integrate (1)

to give z(ai,bi,ti) =
∑

i 2ai∆θi exp(−∆θ2
i /2b2

i ). Equa-

tion (2) can then be solved using an eighteen-dimensional

nonlinear gradient descent on the parameter space [5]. To

minimize the search space for fitting the parameters (ai,bi,
and θi), a simple peak-detection and time-aligned averag-

ing technique is performed to form an average beat mor-

phology using at least the first 60 beats centered on their

R-peaks. (The template window length is unimportant, as

long as it contains all the PQRST features and does not

extend into the next beat). This method, including out-

lier rejection is detailed in [6]. T− and T + are initialized

±40ms either side of θT . By measuring the heights of each

peak (or trough) an estimate of the ai can also be made.

Each bi is initialized with a value 10 + 5µ, where µ is a

uniform distribution on the interval [0,...,1]. Each of the

ai and θi, were initialized with random perturbations of µ
and 20µ respectively. Figure 1 illustrates an example of a

template ECG, the model-fit, and the residual error, εr.

Note that it is important that salient features that one

wishes to fit (the P-wave and QRS segment in the case of

the ECG) are sampled at a high enough frequency to allow

them to contribute sufficiently to the optimization. In em-

pirical tests it was found that when Fs < 450Hz, upsam-

pling is required (using an appropriate anti-aliasing filter).

With Fs < 450Hz there are often fewer than 30 sample

points in the QRS complex and this can lead to some ex-

tremely bizarre fits that still fulfill the optimization criteria.

Figure 2 illustrates a sequential fit of the model (upper

plot) to a series of noisy ECG beats (lower plot) and the

residual error of the fit (central plot, pink noise).

2.3. Clinical metrics, colour & SNR

ECG data was recorded at 256Hz, 12bit from the author

and the surrogates for the QT-interval, PR-interval, QRS
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Figure 1. Original ECG, model fit, and residual error.

Figure 2. Segmentation of the ECG using the model-fit

procedure (3s window). N indicates the onset of the seg-

mentation region and the labels {0, ..., 5} indicate the θi.



width, RS amplitude and ST-level were derived from an

averaged (virtually noise free) template made form aver-

aging the first 60 sinus beats. For simplicity, the surrogate

clinical values are defined such that they can be extracted

by taking differences in pairs of θi (or ECG amplitudes at

the locations of the θi) which resulted in negligible error

in the clinical parameters. 1/fβ noise (white β = 0, pink

β = 1 and brown β = 2) was then added at incrementally

higher signal-to-noise ratios (SNRs). Each clinical param-

eter was measured after model-fitting at each SNR.

The ST level was measured at 80ms after the θS . Clin-

ically significant distortion in the ECG is defined by the

Sheffield criteria [7] to be ≥ 0.1mV for the ST-level (or

about 5% to 10% of the QRS amplitude for a sinus beat on

a V5 lead). For fiducial (R-) peak location (θR), HRV stud-

ies have shown that sampling frequencies below 0.5-1kHz

may distort HRV estimates [8] and therefore a change

above 1ms is considered significant. The QT interval is

the time from onset of QRS to end of T wave (divided by

the square root of the heart rate). Our surrogate QT inter-

val 2π/(θT − θQ). A normal male QT-interval is about

0.39 ± 0.04s (with slightly larger values for women). Val-

ues over 0.5s are cause for concern, therefore we consider

0.05s as a clinically significant distortion.

The PR interval extends from the start of the P wave to

the start of the QRS complex (i.e., to the start of the Q

wave). A normal value is 0.12s to 0.20s. The surrogate PR

interval used here (2π/(θR − θP ) is 1/6s, and a clinically

significant distortion is defined to exceed 0.04s.

The ventricular activation time (VAT), the time it takes

the ventricle to depolarise, is an important clinical param-

eter. We can estimate this as the time from the onset of

the QRS to the intrinsicoid deflection (the sudden down-

stroke of the QRS). Our surrogate measurement for this is

2π/(θS − θR). In right orientated leads, a normal VAT is

0.02s, and on the left (e.g. V6) the duration should not ex-

ceed 0.04s. Therefore, we consider a change of 0.02s clin-

ically significant. In the normal ECG used in this paper,

the surrogate VAT (QRS width) is 2π/(θS − θQ) =0.1s.

To evaluate the model-fitting performance in the pres-

ence of noise a 30s section of ECG is passed through a

QRS-detector and a series of beats is segmented around

the R-peak (±|Fs.RRmax| samples, where RRmax is the

longest RR interval in the window). Each beat is subse-

quently time-aligned in a matrix and the residual of a 5-

component singular value decomposition is computed and

reconstructed as a time series. This signal represents the

noise in the model, since only the first 5 principal compo-

nents of an SVD are required to encode the QRS complex

[9]. The variance of the signal in the first 5 components

over the variance of the residual time series is therefore

the SNR. A gradient of a least square line fit of the log10

power and the log10 frequency gives the noise colour β.

3. Results

Experiments titrating noise from from the Physionet

Noise Stress Test Data Base [10] show that this is a feasible

method of determining noise colouration for electrode mo-

tion and baseline wander (black and brown noise). Analy-

sis of the normal sinus rhythm database shows that obser-

vation noise is generally pink in nature.

Using these methods, the model-based filter is shown to

introduce insignificant clinical distortion in the QT inter-

val and QRS width down to an SNR≥ 0dB for β < 2.

The fiducial point location is shown to be insignificantly

distorted (< 1ms) for an SNR≥ 2dB, and the ST-level is

stable down to SNR> 12dB. The PR-interval is shown to

be more sensitive to noise due to the low amplitude na-

ture of the P-wave. In general, the filter performance is

degraded by increasing β.

3.1. Applications & future improvements

One obvious application of the model-fitting procedure

is for ECG-segmentation and feature location. The model

parameters explicitly describe the location, height and

width of each wave (θi, ai and bi) in the ECG, in terms

of a well-known mathematical object, a Gaussian. There-

fore, feature locations and parameters derived from these

(such as the P-, Q-, and T-onset and hence the PR and QT

interval) are easily extracted. Onsets and offsets are con-

ventionally difficult to locate in the ECG, but using a Gaus-

sian descriptor, it is trivial to locate these points as two or

three standard deviations of bi from the θi in question.

For ECG features that do not explicitly involve the P ,

Q, R, S or T points (such as the ST-segment), the filtering

aspect, or noise-free representation of this method is ap-

propriate. If we define the ST segment to be the point of

inflection between the Q and T waves, then this point can

easily be found as the minimum of the second differential

of the segment between the θQ and θT . Furthermore, the

εr in the fitting procedure provides a confidence index for

the extraction of any parameters from the ECG itself.

Another parallel application domain for the model-fit

approach is (lossy) compression with a rate of ( Fs

3k
:1) per

beat where k = n+2m is the number of features or turning

points used to fit the heart beat morphology (with n sym-

metric and m asymmetric turning points). For a low Fs

(≈ 128Hz), this translates into a compression ratio greater

than 7:1 at a heart rate of 60bpm. However, for high sam-

pling rates (Fs = 1024) this can lead to compression rates

of almost 60:1.

Although classification of each beat in terms of the val-

ues of ai, bi, and θi is another obvious application for this

model, it is still unclear if the clustering of the parameters

is sufficiently tight, given the sympathovagal and heart-rate

induced changes typically observed in an ECG. It may be



necessary to normalize for heart-rate dependent morphol-

ogy changes at least. This could be achieved through uti-

lizing the HR-related compression factor α, that we intro-

duced in [4]. However, clustering for beat typing is depen-

dent on population morphology averages for a specific lead

configuration. Not only would different configurations

lead to different clusters in the 18-dimensional parameter

space, but small differences in the exact lead placement

relative to the heart would cause an offset in the cluster. A

method for determining just how far from the standard po-

sition the recording is, and a transformation to project back

onto the correct position would be required. One possibil-

ity could be to use a procedure designed Moody et al. [9]

for their ECG classifier Aristotle. In their approach, the

beat clusters are defined in a Karhunen-Loève (KL)-space

and therefore an estimate of the difference between the

classified KL-space and the observed KL-space is made.

Classification is then made after transforming from the ob-

servation to classification space in which the training was

performed. By measuring the distance between the fitted

parameters and pre-trained clusters in the 18-dimensional

parameter space, classification is possible. It should be

noted that, as with all classifiers, if an artifact closely re-

sembles a known beat, a good fit to the known beat will

obviously arise. Therefore setting tolerances on the ac-

ceptable error magnitude may be crucial, and a test over a

set of labeled databases is required.

4. Conclusions

By fitting equation 1 to small segments of the ECG

around each QRS-detection fiducial point an idealistic

(zero-noise) representation of each beat’s morphology is

derived. This leads to a method for filtering and segment-

ing the ECG and therefore accurately extracting clinical

parameters even with a relatively high degree of noise in

the signal. It should be noted that since the model is a com-

pact representation of oscillatory signals with few turning

points compared to the sampling frequency, and it there-

fore has a band pass filtering effect leading to a lossy trans-

formation of the data into a set of integrable Gaussians

distributed over time. This approach therefore could be

used on any band-limited waveform. Moreover, the error

in each fit can provide beat-by-beat confidence levels for

any parameters extracted from the ECG and each fit can

run in real time (0.1s per beat on a 3GHz P4 processor).

The real test of the filtering properties is not the residual

error, but how distorted the clinical parameters of the ECG

are in each fit. In this paper, an analysis of the sensitivity

of clinical parameters to the colour of additive noise and

the SNR is given together with an independent method for

calculating the noise colour and SNR. An online estimate

of the error in each derived fit can therefore be made. By

titrating coloured noise into real ECGs, it has been shown

that error in clinical parameters derived from the model-fit

method presented in this paper are clinically insignificant

in the presence of high amounts of coloured noise. How-

ever, clinical features that include low-amplitude features

such as the P-wave and the ST-level are more sensitive to

noise power and colour. Future research will concentrate

on methods to constrain the fit for particular applications

where performance is substandard.
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[5] Moré JJ. The levenberg-marquardt algorithm: Implementa-

tion and theory. In Lecture Notes in Mathematics, volume

630. 1978; .

[6] Clifford GD, Tarassenko L, Townsend N. Fusing con-

ventional ECG QRS detection algorithms with an auto-

associative neural network for the detection of ectopic

beats. In 5
th International Conference on Signal Process-

ing. IFIP, Beijing, China: World Computer Congress, Au-

gust 2000; 1623–1628.

[7] Wagner G. Marriott’s Practical Electrocardiography. 9
th

edition. Baltimore, Williams & Wilkins, 1994.

[8] Clifford GD, Tarassenko L. Quantifying errors in spectral

estimates of HRV due to beat replacement and resampling.

IEEE Transactions in Biomedical Engineering April 2005;

52(4):630–638.

[9] Moody GB, Mark RG. QRS morphology representation

and noise estimation using the Karhunen-Loève transform.

Computers in Cardiology 1989;269–272.

[10] WWW.physionet.org/physiobank/database/nstdb/.

Address for correspondence:

Gari D. Clifford ( http://alum.mit.edu/www/gari/ )

Harvard-MIT Division of Health Sciences & Technology

45 Carleton St., / Cambridge MA 02139, / USA


