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Abstract 

We describe a new model for collaborative access, 
exploration, and analyses of the Medical Information 
Mart for Intensive Care - III (MIMIC III) database for 
translational clinical research. The proposed model 
addresses the significant disconnect between data 
collection at the point of care and translational clinical 
research. It addresses problems of data integration, pre-
processing, normalization, analyses (along with 
associated compute back-end), and visualization. The 
proposed platform is general, and can be easily adapted 
to other databases. The pre-packaged analyses toolkit is 
easily extensible, and allows for multi-language support. 
The platform can be easily federated, mirrored at other 
locations, and supports a RESTful API for service 
composition and scaling. 

1. Introduction

The Precision Medicine Initiative was recently 
launched to develop a new model of patient-focused 
research, to “accelerate biomedical discoveries and 
provide clinicians with new tools, knowledge, and 
therapies to select which treatments will work best for 
which patients” [1].  Precision Medicine can help develop 
best practices and to enhance safety by integrating 
multiple lines of evidence. The Intensive Care Unit (ICU) 
represents a unique data source for supporting precision 
medicine. ICU records are comprised of clinical treatment 
data, large ECG and blood pressure monitoring data sets, 
and associated outcomes.  ICU data is often invaluable in 
understanding cardio physiology and the impact of 
medicines on heart physiology, as measured by blood 
pressure and ECG. Additionally, ICU records may 
provide enough data to support expansion of accepted 
endpoints and deeper insights into drug safety. One of the 
challenges of cardiac safety research is that there are 

relatively rare events, the potential for drug-drug 
interactions, and these events may be dependent on the 
physiological status of the patient. 

 “Cardiac safety concerns are a leading reason why 
pharmaceutical companies withdraw drug applications 
prior to approval and why approved drugs are removed 
from the market” [2]. The FDA is critically aware that 
advanced analytics are essential here, “We hope to 
identify patterns that will help us predict which patients 
are at an increased risk for cardiovascular side effects. 
This knowledge can guide the development of safer 
treatments” [2]. Moreover, the FDA understands that 
clinically relevant results will require large data sets, “In 
addition, very small increases in the QT interval appear to 
carry risk, so studies that assess cardiac drug effects 
require collection of many thousands of ECGs” [2].  

Recent developments in models and methods for data 
sciences such as deep learning, coupled with massively 
parallel computing platforms are enabling significant 
advances in applications such as image processing, 
natural language processing, and computational biology. 
Analysis of large volumes of ECG and blood pressure 
data support data driven clinical decision making.  
However, improvements in computational throughput 
have not translated into increases in clinical 
understanding. The amount of translational research 
effectively utilizes only a small fraction of  the terabytes 
of data currently being collected in clinical settings [3].  
Primary obstacles to more effective utilization include 
poor lines of communication between data scientists and 
clinicians on disease prognoses, technical difficulties due 
to the heterogeneity and complexity of physiological data, 
and lack of regulatory guidelines. This latter 
consideration also includes the absence of research with 
data driven systems to assess the risk and benefit of using 
such systems in clinical settings. The importance of data 
driven systems in clinical decision making is at the core 
of the Precision Medicine initiative: collection of clinical 
data in the form of electronic health  
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records (EHRs) [9], including detailed local databases 
[10], or large administrative databases as collected by 
Medicare and Medicaid [11]. Despite these initiatives, 
there remains a major disconnect between data collection 
and translational research [12]. Limited advances in 
regulatory insights stem from the challenges of 
conducting research with data driven systems to assess 
the risk and benefit of using such systems in clinical 
settings. Ironically, the rate limiting steps in this process 
correspond to assembling the data into cohorts, something 
that is commonplace in data analytics, irrespective of the 
domain [13], and being able to analyze longer time 
windows of signal data over hundreds to thousands of 
patient days.  What is needed is a new data model that 
allows different types of data to be stored, queried, and 
analyzed in the database.  SciDB is a computational, array 
native database that allows data to be stored, queried and 
analyzed in the database.  In this work, SciDB is central 
to the development of a new tool to support interactive 
exploration of the MIMIC III dataset. MIMIC III [14] is 
created and maintained by the Laboratory for 
Computational Physiology at the Massachusetts Institute 
of Technology.  The database contains high resolution 
waveform data and clinical information on patients 
admitted to the Intensive Care Unit (ICU) since 2001 at 
the Beth Israel Deaconess Medical Center. The database 
has three main components: clinical, numeric, and 
waveform data. Numeric data contains minute by minute 
physiologic parameters extracted from waveform data, 
and usually every waveform record has a simultaneously 
recorded numeric record (e.g. the electrocardiogram 
waveform record has an associated heart rate numeric 
record). Clinical data is collected distinctly from the 
patient’s EHR. A ‘matched subset’ links the 
waveform/numeric records to the corresponding clinical 

records: about 7% of the total data [Figure 1]. This large 
collection of heterogeneous data is from various sources 
and stored in a variety of formats. Consequently, it is 
difficult for clinical researchers to perform a cursory 
overview of the data and subsequently dig deeper into the 
data without a sound understanding of programming 
languages and database architectures, without access to 
powerful computational capabilities. The summary in 
Table 1 lists prominent research initiatives that use the 
MIMIC database. Each research initiative must deal with 
the following highly technical but repetitive manual tasks: 
 High level browsing and exploration of the

database
 Integration of heterogeneous data sources
 Cohort selection based on clinical criteria, and
 Use of different machine learning and statistical

algorithms.

 This, obviously, can be a limiting factor in performing 
translational research. To address this on a smaller scale, 
namely with one database (MIMIC III), we developed a 
new model that enables high level exploration and 

Citation Research Problem Methods Cohort Selection Criteria Data Cohort Size 
[4] Mortality Prediction 

with acute kidney injury 
(AKI) 

Multivariable 
Regression 

ICD9 = AKI and ICU stay ≥3 
days 

C 1,400 

[5] Local customized mortality 
prediction, outcome is 
survival to hospital 
discharge 

Logistic Regression (LR), 
Bayesian Network (BN), 
Artificial Neural 
Network (ANN) 

ICD9 = Acute Kidney Injury 
(AKI) AND/OR ICD9= 
subarachnoid hemorrhage 
(SAH) 

C 1,400 for 
AKI, 223 
for SAH 

[6] Whether ‘similar’ dynamical 
patterns can be identified 
across a heterogeneous 
patient cohort 

Switching Vector 
Autoregressive 
framework (SVAR) 

At least 8 hours of continuous 
minute by minute HR and BP 
trend within the first 24 hour 
of admission 

C & W 450 

[7] Whether red cell 
distribution width (RDW) 
has the potential to 
improve prognostic 
performance 

Multivariable 
Regression 

All adult patients who had 
RDW measurements at 
admission 

C 17,922 

[8] Investigate discriminatory 
pattern in hemodynamic data 

Artificial Neural 
Network (ANN) 

Defined by clinical event of HE 
from ‘matched Subset’ 

C & W 1,311 

Figure 1. Components of MIMIC database. 

TABLE 1. RESEARCH PROJECTS WITH MIMIC DATABASE. ‘C’ FOR CLINICAL AND ‘W’ FOR WAVEFORM OR NUMERIC DATABASE. 

 

 

  



browsing of the database, integration of heterogeneous 
data sources, automatic cohort selection with a minimal 
amount of programming. 

2. Related work

 Systems for integrating and exploring disparate data 
sets are the subject of significant prior efforts.  PhysioNet 
hosts MIMIC [15] and has developed different software 
systems for accessing and visualizing the database on 
different platforms under the umbrella of the Physionet 
toolkit. The problem of data set selection according to 
required criteria and the analysis of disparate data are 
extensively investigated in computer science and database 
technologies [16]. Recent advances in sensor technologies 
and the ubiquity of handheld devices are further pushing 
researchers to address this problem.   One research 
initiative in this area is the Intel Science and Technology 
(ISTC) Big Data Working Group (BigDaWG) [17]. This 
group is building the polystore architecture with the 
MIMIC database as a test bed for their system. While this 
initiative is promising, it sweeps aside the immediate 
needs of the clinical researchers interested in investigating 
large data sets such as MIMIC. IBM has also launched 
Watson Analytics which is not open source. Two other 
examples include the tranSMART and i2b2 [18] [19]. 
They are building open source software platform for 
clinical research that would support data exploration, 
complex analysis and convenient access. However, they 
currently does not support disparate database systems and 
distributed computing necessary for big data analysis on 
data sets such as MIMIC.  

3. Our approach

Regenstrief Center for Healthcare Engineering 
(RCHE) at Purdue University works on population health 
management and prediction models for clinical 
intervention and data analysis for policy making in 
healthcare. In order to accelerate translational clinical 
research, the center has built a software tool for the 
MIMIC for,  

 High level exploration and visualization of
the database

 Clinical and Waveform database integration

 Open analysis with making the source code
available

 Complex analysis across the database with
distributed computing architecture

 The software architecture and data flow diagram is 
shown in Figure 2. Waveform Database (WFDB) toolbox 
in UNIX is used to convert the waveform data to CSV 
format and Bash and Python scripts are used to load the 
data in SciDB. R and Shiny is used for the integration, 
visualization and complex analysis. Figure 3 shows the 
database design using two 2d arrays in SciDB. For this 
work, only the matched subset with numeric data were 
used.  

4. Use cases

The software architecture can be used for very simple 
as well as complex analyses based on the MIMIC 
database. Two example cases are described. The source 
code is available in the following links:  

https://github.com/adibzaman/Shiny-MIMIC-UsecaseOne 
https://github.com/adibzaman/Shiny-MIMIC-UsecaseTwo 

4.1  Use case one 

In June 2016, the FDA issued a safety announcement 
about serious heart problems with the antidiarrheal 
medicine Loperamide (Imodium) [20]. This warning was 
based on a sample of 48 patients.  With a simple query of 
the MIMIC database, one can access 2,309 prescriptions 
of the drug Loperamide. Consequently, it would be of 
interest to know the demographic information as well as 
the status of the vital signs (including heart rate) for these 
patients. This query can be done from the following link 
without any programming:  

http://mimic.catalyzecare.org:3838/sample-apps/usecaseone/ 

4.2  Use case two 

Prediction of hypotensive episodes is of much interest 
in the clinical scenarios of an Intensive Care Unit [8] as 
timely detection for such events can be the difference 
between life and death.  To develop a machine learning 
algorithm for the prediction of hypotensive episodes, it is 
necessary to define a hypotensive episode from blood 
pressure data (e.g., hypotension can be defined as 90 

Figure 2. Data flow architecture of the system. 
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Figure 3. Waveform Database design in SciDB with two 2D Arrays. 
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percent of the mean arterial blood pressure measurements 
during a 30 minute period being between 10 and 60 
mmHg) and then search for those events in the waveform 
database, and build an algorithm by integrating necessary 
clinical information concurrent to these events from the 
clinical database. This can now be achieved by just one 
click of the following URL:  

http://mimic.catalyzecare.org:3838/sample-apps/usecasetwo/ 

5. Conclusion

The combination of SciDB and PostgreSQL RDBMS 
software architectures can help to accelerate translational 
clinical research with MIMIC database. Integrated 
datasets will drive collaboration between data scientist, 
clinicians and software engineers. Using this approach, in 
the future, it should be possible to reproduce an entire 
research outcome from a single mouse click, allowing 
other researchers to test their own hypothesis by changing 
the parameters and cohort selection for their research and 
thus bring the open source movement to data driven 
translational clinical research [21]. This platform concept 
could change the way that we think about data intensive 
clinical research, the project life cycle and regulatory 
approval process, reducing the time from idea to 
translation and bringing together all the different 
stakeholders in a transparent data driven platform.  
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