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Abstract—Detection and classification of ventricular complexes 

from the electrocardiogram (ECG) is of considerable importance 
in Holter and critical care patient monitoring, being essential for 
the timely diagnosis of dangerous heart conditions. Accurate 
detection of premature ventricular contractions (PVCs) is 
particularly important in relation to life-threatening 
arrhythmias. In this paper, we introduce a model-based dynamic 
algorithm for tracking the ECG characteristic waveforms using 
an extended Kalman filter. The algorithm can work on single or 
multiple leads. A ‘polargram’ - a polar representation of the 
signal - is introduced, which is constructed using the Bayesian 
estimations of the state variables. The polargram allows the 
specification of a polar envelope for normal rhythms. Moreover, 
we propose a novel measure of signal fidelity by monitoring the 
covariance matrix of the innovation signals throughout the 
filtering procedure. PVCs are detected by simultaneous tracking 
the signal fidelity and the polar envelope. Five databases, 
including 40 records from MIT-BIH arrhythmia database, are 
used for differentiating normal, PVC, and other beats. 
Performance evaluation results show that the proposed method 
has an average detection accuracy of 99.10%, aggregate 
sensitivity of 98.77%, and aggregate positive predictivity of 
97.47%. Furthermore, the method is capable of 100% accuracy 
for records that contain only PVCs and normal sinus beats. The 
results illustrate that the method can contribute to, and enhance 
the performance of clinical PVC detection. 
 

Index Terms— Characteristic waves, Electrocardiogram 
(ECG), Extended Kalman filter (EKF), Premature ventricular 
contraction (PVC), Signal quality, Signal fidelity, Wave-based 
dynamical model 
 

I. INTRODUCTION 
Cardiovascular diseases (CVDs) are the leading single 

cause of death in the developed world and are responsible for 
more than 30% of all deaths in most countries. For instance, 
the American Heart Association (AHA) recently reported that 
nearly 80 million people in the U.S.A. were burdened by some 
form of CVD, of which eight million experienced myocardial 
infarction, or a ‘heart attack’. Additionally, CVDs were the 
underlying cause of one in every 2.8 deaths in 2008 [1]. The 
detection of CVD and the determination of the underlying 
etiology of the disease for prevention and treatment is 
therefore a crucial task. Identifying premature ventricular 
contractions (PVCs) in Holter recordings or during monitoring 
is of particular interest. PVCs result from irritated 
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ectopic foci in the heart's ventricles, and are independent of 
the pace set by the sinoatrial node. Recent studies have shown 
that the occurrence of PVCs is indicative of increased risk of 
sudden cardiac death, and is linked to mortality when 
associated with myocardial infarction [2]. The presence of 
PVCs has also been shown to be associated with an increased 
total mortality in some patient subgroups, suggesting that a 
high frequency of PVCs is a marker of a more severe disease 
process, rather than the provocateur of a terminal electrical 
event. Events that occur after a PVC are alos of interest, and 
in particular, the rate of acceleration and deceleration of the 
heart rate immediate after a PVC has shown to be more 
effective than ejection fraction in stratifying patients post-
myocardial infarction [3]. Therefore, accurate detection of 
PVCs is of great significance for stratifying patients at high 
risk and predicting life-threatening ventricular arrhythmias. 

Accurate, noninvasive diagnosis of and screening for CVD 
has been a challenge. Electrocardiogram (ECG) analysis is 
routinely used as the first tool for initial screening and 
diagnosis in clinical practice. The ECG as a noninvasive and 
low-cost method provides valuable clinical information 
regarding the rate, timing and regularity of the heart [4]. 
Analysis of the ECG remains the benchmark method for 
cardiac arrhythmia detection. Several methods have been 
proposed in the literature for automatic detection and 
classification of various arrhythmias. The vast majority of the 
developed techniques includes algorithms based on time 
domain features [5], ECG morphology and heartbeat interval 
features [6], principal component analysis (PCA) [7], hidden 
Markov models [8]-[10], self organizing maps [11], wavelets 
and filter banks [12] , [13], statistical classifiers [14] and 
neural networks (NN) [15], [16]. On the other hand, efforts 
have been aimed at coping with the specific problem of PVC 
detection. Most works in this field employ NNs to classify the 
PVCs after performing a suitable processing for the extraction 
of discriminant features [17]-[22], and some authors underline 
the advantages of the competitive classifiers [18], [23]. 
Although these methods have shown promising results, they 
have several disadvantages. First, the methods suffer from the 
problem of finding efficient feature sets [19]-[22]. Second, 
since there are various choices for selecting the network 
structure to achieve an acceptable performance, finding the 
optimum architecture has not a unique solution [20]-[22]. The 
use of symbolic dynamics analysis [24] and Gaussian 
processes [25] for PVC detection has also been reported. 

Recently, Bayesian filters were proposed for ECG 
denoising [26] and filtering cardiac contaminants [27]. The 
state-space model used in this approach was inspired from the 
model proposed by McSharry et al [28], who suggested the 
use of Gaussian mixture models to generate synthetic ECGs. 
It was later found that by some modifications, the filtering 
framework developed by Clifford et al [29] and Sameni et al 
[26] could be used as a parameter-based framework for 
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model-based ECG filtering [29], [30], simultaneous denoising 
and compression [29], [31], and beat segmentation [29], [32]. 

In this paper, we propose the tracking of the parameters of 
an updated Gaussian wave-based representation of the ECG 
by employing a Bayesian estimation procedure through an 
extended Kalman filter (EKF). A new polar representation is 
then introduced together with a procedure to track rhythm 
changes using the innovation sequence provided by the EKF. 
The paper is organized as follows. In section II, the wave-
based dynamical model is presented. Section III provides 
relevant background on the theory of the EKF. In section IV, 
our proposed algorithm for PVC detection is explained in 
detail. Section V is devoted to simulation results. Finally, a 
discussion and conclusions are provided in section VI. 

II. WAVE-BASED ECG DYNAMICAL MODEL 
A simple interpretation for modeling an ECG record is to 

model every heart beat as a combination of finite 
characteristic waveforms (CWs), each of which represented 
by the sum of Gaussian kernels. In other words, we assume 
that every cycle of a heart beat recorded on an ECG can 
comprise a finite number of CWs, (typically the P wave, QRS 
complex and T wave). However, every CW reflects the 
electro-physiologic functioning of a specific part of the heart, 
which in turn facilitates the analysis of the ECG events. This 
idea originates from the synthetic nonlinear dynamic model 
that was proposed for generating artificial ECGs by McSharry 
et al [28]. The model generates a three-dimensional trajectory 
which consists of a circular limit cycle that is pushed up and 
down as it approaches each of the turning points in the ECG 
(P, Q, R, S and T) whose centers are the center of each 
Gaussian. The simplified discrete version of the model in the 
polar plane is given by [26]:  
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where δ  is the sampling period, fπω 2= , f  is the beat-to-
beat heart rate and )2mod()( πθϕθ

kk iki −=∆ . The phase, 
ϕ , is a saw-tooth shape signal that is expected to be zero at 
R-peaks, and is linearly assigned a value between π−  and π  
for each sample between two successive R-peaks. ii b,α and 

iθ are the amplitude, angular spread and location of the 
Gaussian functions, respectively, and η  represents random 
additive white noise which accounts for baseline wander 
effects and other additive sources of process noise. It can be 
seen that the ECG signal s is represented by a sum of 
Gaussian functions, whose locations are controlled by the 
phase signalϕ . In order to model the separate events of an 
ECG signal, the second dynamical equation in (1) can be 
divided into separate state variables, each of which has a 
similar behavior to the original equation. However, the 
separation and the corresponding increase in the 
dimensionality facilitate the analysis of different events in the 
ECG signal.  

Assuming the presence of three distinct CWs, 
corresponding to the P wave, QRS complex and T wave, the 
ECG signal is divided into three components. In addition, to 

have a more accurate representation of the CWs, the number 
of Gaussian functions can be varied. Clifford et al proposed 
an extension of the model which used an arbitrary number of 
Gaussians, with 2 Gaussians for each asymmetric turning 
point (P and T) [29]. Since Gaussians are symmetric, 
asymmetric turning points require more than one Gaussian 
and that two is the minimum number in this case and therefore 
the best choice, as we want to minimize the number of 
parameters for computational simplicity. Accordingly, P and 
T waves are characterize by two Gaussian kernels to account 
for bi-phasic P waves and the asymmetric nature of the T 
wave at low to medium heart rates. In contrast, the inclusion 
of more than one kernel for Q, R, and S is of negligible 
importance. Specifically, Sayadi and Shamsollahi showed that 
minimum five kernels are essential for preserving the 
morphological features in the EKF filtered signal [31]. 
However, increasing the number of Gaussians has a negligible 
effect on the filtering performance, yet provides a slightly 
improved compression ratio [30], [31]. Consequently, we 
adopted 7 Gaussian kernels to model an ECG beat. The 
modified model is given by: 
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where Pη , Cη  and Tη represent the baseline perturbations of 
the P wave, QRS complex and T wave, respectively.  

III. BAYESIAN STATE ESTIMATION THROUGH EXTENDED 
KALMAN FILTER 

Having derived the state space representation for the ECG 
signal, the process equations of a Bayesian framework are 
formed. Relating the ECG signal as an observation to the state 
variables in the left side of state-space model (2) is now 
straightforward, since the CWs are summed up to form the 
ECG. The observed noisy phase kφ and noisy amplitude kz of 
the ECG are given by: 
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where 
k

u1 and 
k

u2 are the observation noises of the ECG in 
the phase and spatial domains, respectively. Using the wave-
based dynamical model (2) as the process equations and the 
observation relations (3), the state variables vector, kx  and 
the observation vector, ky , the process noise vector, kw , and 

the observation noise vector, kv , are defined, respectively, as: 
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The wave-based dynamic model, equation (2), is a 
nonlinear function of the state and process noise vectors. 
Therefore, nonlinear extensions of the Kalman filter (KF) are 
required for estimating the state vector. Our proposed 
framework is built upon an extended Kalman filter structure 
for its simplicity and improved numerical stability over other 
Bayesian filters [33]. In order to use the KF formalism for this 
system, it is necessary to derive a linear approximation of (2) 
near a desired reference point )ˆ,ˆ,ˆ( kkk vwx , to obtain the 
following linear approximate model: 
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where f is the state evolution function, equation (2), and g 
represents the relationship between the state vector and the 
observations, equation (3). The linear approximate 
coefficients in (5) are given by [34]: 
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In order to implement the EKF, the time propagation and 
the measurement propagation equations are summarized as 
follows [34]: 
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where },...,{ˆˆ 11 yyxEx kkk −

− =  is the a prior estimate of the 
state vector, xk, at the kth stage using the observations y1 to yk-1, 
and },...,{ˆˆ 1yyxEx kkk =+  is the a posteriori estimate of this 

state vector after using the kth observation yk. −
kH  and +

kH are 
defined in the same manner to be the estimations of the 
covariance matrices, in the kth stage, before and after using the 
kth observation, respectively. In addition, Qk=E{wkwk

T} and 
Rk=E{vkvk

T} are the covariance matrices of the process noises 
and measurement noises, respectively, and }{ kk wEw = , 

}{ kk vEv =  [35]. As it can be seen in (7), the key idea of the 
EKF is to linearize the nonlinear system model in the vicinity 
of the previous estimated point, and to recursively calculate 
the filter gain kK , the innovation signal kr  and the state 

covariance matrices −
kH and +

kH from the linearized 
equations, while the KF time propagation is performed via the 
original nonlinear equations [36]. 

IV. BAYESIAN DETECTION OF PVC 
A PVC is a morphological abnormality that generally only 

appears in a small number of the ECG cycles and imposes a 
rhythm change in the normal ECG pattern, so that the P wave 
vanishes by the occurrence of a dominant wide QRS followed 
by a dominant T wave. This morphological change can lead to 
large errors in the Gaussians functions’ locations. In this case 
the EKF estimations are not expected to be satisfactory. 
However, the benefit of the Gaussian mixture representation is 
that the effect of each Gaussian term vanishes very quickly (in 
less than the ECG period), meaning that the errors are not 
propagated to the following ECG beats [26]. Moreover, by 
monitoring the state estimates’ covariance matrices and the 
variations of the innovation signals, it is possible to detect 
such unexpected abnormalities. Therefore, in this section we 
define some signal fidelities by tracking the covariance matrix 
of the innovation signal throughout the filtering procedure to 
detect unexpected morphological changes, such as a PVC. We 
also introduce a new polar representation to distinguish PVCs 
from other rhythm changes. 

 
A.  Monitoring the signal fidelity 

 
In practice, due to the Gaussian assumption on the noise 

sources and the initial state vector values, the state estimate 
entries of +

kx̂ should lie within the envelope of the square 

roots of their corresponding diagonal entries in +
kH for the 

majority of the time. Therefore, by monitoring the variance of 
the state estimations, it is possible to detect these 
morphological changes [33]. 

Another approach to provide a means of monitoring the 
fidelity of the filter is to update the values of kQ and kR , 
which is practically convenient to monitor the covariance 
matrix of the innovation signal throughout the filtering 
procedure and to compare it to the innovation covariance 
matrices estimated by the KF [37]. Specifically, with a 
diagonal (or diagonalized) noise covariance matrix of kR , the 
following term can be formed for the ith ECG measurement, 
which we call the signal fidelity: 

 

},,{,
}){(

)(1

1
2

2
TCPCW

rE
r

N

i

Nik
CW
k

s
kCW

i ∈= ∑
+−=

γ  
 
(8) 

where s
kr  is the second entry of the zero-mean innovation 

vector of kr  defined in (6), corresponding to the kth ECG 
measurement, N is the length of the averaging window, and 

}){( 2CW
krE  is the KF estimated variance of s

kr  for CWs, 
given by: 
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where s
kM is the 2nd row of the kM matrix defined in (7), P

km , 
C
km  and T

km   are the 2nd, 3rd and 4th entry of s
kM , 

respectively. Similarly, P
kH )( − , C

kH )( −  and T
kH )( −  are the 

2nd, 3rd and 4th column of the −
kH  matrix, respectively, and 

}{ 2
2

2
2 kk

uEu =σ is the second diagonal entry of kR . In fact, 

γCW is an average of the variances of the N recent ECG 
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innovations, normalized by their KF estimated variances of 
the corresponding CWs. This formulation originates from the 
proposal of Sameni et al [26] to use the KF estimated variance 
for improving the filtering performance. However, since we 
are intended to investigate the fidelity for every characteristic 
component, in the current approach, the original formulation 
is modified to provide three signal fidelities corresponding to 
three CWs. It is worth noting that as long as the ECG 
morphology remains normal, 1≈iγ . Values much greater than 
unity indicate that the innovation signal variance is being 
underestimated by the KF, while values close to zero indicate 
that the innovation signal variance is being overestimated. 
Sameni et al benefited from this property of iγ  to adaptively 
modify the KF noise parameters to ensure the filter stability 
and to achieve better filtering performances in low SNR 
scenarios [26]. However, in the current approach, we monitor 
the γCW’s to detect any significant rhythm change in the ECG 
signal, which will affect the P-QRS-T morphology. In 
addition, unlike the original model (1), the wave-based model 
(2) enables us to define three γCW corresponding to each CW. 
Hence, the morphological changes may be simply identified 
and localized by monitoring the γCW signals. Three adaptive 
thresholds, thrCW, corresponding to three γCW signals are used 
to detect the fidelity peaks. The value of  thrCW is defined to 
preserve 95% of the γCW energy, and is at least 3 times the 
mean value of γCW. In other words, with L be the length of the 
signal fidelity, the thresholds should satisfy the following 
conditions: 
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The best values of the energy and multiplier of the mean 
value of γCW were found by changing all possible values over 
the used database. 

As a disadvantage, the innovation sequences are affected 
not only by morphological changes of the observation signals, 
but also by local noise artifacts and filter divergences [37]. 
Hence, in order to identify the PVCs using γCW, we need a 
symptom of rhythm change for discrimination between 
artifacts and real rhythm changes. In the next section we 
introduce a polar representation using the estimations 
provided by the EKF and address how to use this 
representation for PVC rhythm identification. 

 
B.  Polargram formation and envelope extraction 

 
The wave-based ECG dynamical model (2) suggests that 

the ECG signal is considered as a combination of three 
characteristic waveforms. Using a Bayesian filter structure, 
each of these CWs, as well as the phase signal, can be tracked 
in time. A polar representation for the ECG signal, which we 
call polargram, can be obtained using the 2D vector 

])([ ′++ kk TCPϕ  at each time instance, k . By simply 
plotting the samples of the summed CWs, as the amplitude, 
and their corresponding phase values, a polargram for the 
whole ECG signal is obtained. The polargram clearly shows 
the beat to beat variations during different ECG cycles. In 
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Fig. 1.   EKF estimations and polargram formation for a typical normal ECG 
signal. (a) ECG noisy record and the corresponding phase signal, (b) CW 
estimation provided by EKF4, (c) The estimated phase and filtered ECG 
signals using EKF4, (d) Polargram with the CW partitioning included. 

 
addition, by analyzing a specific portion of the polar plane, it 
is possible to investigate the inter-beat variations for every 
CW. This is because in the phase signal construction, the R-
peak is always assumed to be located at 0=Rθ and the ECG 
contents lying between two consecutive R-peaks are assumed 
to have a phase between π−  and π  [26]. Visual inspection of 
various ECG signals shows that the QRS complex lies in the 
range of ]6/,6/[ ππ− . Hence, the preceding P wave and the 
proceeding T wave will occur in the range of ]6/,[ ππ −−  and 

],6/[ ππ , respectively. Fig. 1 shows a typical normal ECG 
signal and the corresponding phase signal, the estimations 
provided by the EKF and the polargram with the 
corresponding partitioning. In fact, the polargram is simply 
the polar plot of kTCP )( ++ vs. kϕ , and the idea of 
partitioning the polargram is the key to identifying PVCs from 
normal sinus beats. 

As stated before, the morphological changes imposed by 
PVC occurrence lead to large errors in the Gaussian kernels’ 
locations, which result in unsatisfactory filtering performance. 
In other words, the PVC morphology has minimum amount of 
phase overlap with the underlying morphology of the normal 
ECG signal. Hence, if we specify a specific span in the 
polargram, any undesired change in the morphology of the 
signal would lie out of this span. Using the mean ( )(θECG ) 
and the standard deviation ( )(θσ ECG ) of this new 
representation, we define a polar envelope which spans 
between the upper and lower ranges of 

)(3)( θσθ ECGECG ± in the polar plane. Hence, any 
morphological changes are expected to happen outside this 
envelope. 

In order to classify PVCs and other abnormal beats, we can 
take advantage of the CW parameter estimations provided by 
the EKF. Since we have the estimations of the CWs, as well 
as the phase signal, it is possible to have 3 different 
polargrams corresponding to P, QRS and T. In other words, 
the 2D vectors ][ ′kk Pϕ , ][ ′kk Cϕ and ][ ′kk Tϕ  provide 
three separate polar paths for all time instances, k . Any 
morphological changes are detected by monitoring γCW, and 
their corresponding envelope )(3)( θσθ CWCW ± . However, 
to verify the PVCs, one should search the CW polargrams for 
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Fig. 2.   General block diagram of the proposed PVC detection algorithm. 
 
the absence of a P wave together with the increase in the 
width of QRS complex and T wave polar paths. The overall 
PVC detection algorithm is illustrated in figure 2, in which the 
phase calculation block is simply an R-peak location detector, 
followed by linear assigning of a phase value between π−  
and π  to the intermediate samples [26]. The decision making 
block uses the polargrams and the signal fidelities to detect 
PVC occurrence. In fact, we use equation (10) to compute the 
values of thrCW using the γCW signals. Afterwards, the 
thresholding is performed to locate γCW peaks. Finally, the 
polargram is examined for the occurrence of cycles outside 
the polar envelope in different partitions. If this occurrence 
holds for all polargrams and the corresponding γCW passes the 
threshold, then the beat is determined to be a PVC. 

V. RESULTS 
The proposed algorithm was implemented in MATLAB®. 

The MIT-BIH Arrhythmia Database [38], [39] was used to 
study the performance of the proposed method. The 
performance of the KF is influenced by the initial value for 
the state vector, as well as the covariance matrices of the 
process and the measurement noise. Hence, we employ the 
initialization procedure described in [26] and [31]. 
Accordingly, the angular frequencyω , is set to RRT/2πω = ; 

where RRT  is the average RR-interval of the whole signal. In 
order to estimate the initial values for the Gaussian kernels, a 
typical nonlinear optimization scheme such as the Levenberg-
Marquardt procedure [40],[41] is performed on the mean ECG 

( )(θECG ) and the standard deviation ( )(θσ ECG ) [29]. 
 Similarly, the covariance values of kQ are found by 
calculating the magnitude of the deviation of the parameters 
of the Gaussian functions around the estimated mean, that best 
model the acceptable deviations of the mean ECG within the 
upper and lower ranges of )()( θσθ ECGECG ± . In a similar 

manner to [26], we set 12/)(}{ 22
1 ωδ=

k
uE , and }{ 2

2k
uE  to 

the mean variance of baseline perturbations. The values of 
}{ 2

kPE η , }{ 2
kCE η and }{ 2

kTE η  are found from the deviations of 

the inactive segments of the ECG, around the corresponding 
CW portion.  

Fig. 3 shows a typical ECG signal with PVCs included, the 
γCW’s and the polargrams. The envelopes of normal rhythms 
are also provided, which excludes the PVCs. Visual 
inspection reveals that these exclusions correspond to the 
peaks of γCW, as was expected. Moreover, two PVCs are 
obvious in all CW polargrams, as well as in all γCW’s, see Fig. 
3 (f)-(h). 

 

As discussed in the previous section, γCW is sensitive to any 
morphological changes. However, the benefit of the proposed 
wave-based model is that it provides 3 different γCW s, each of 
which monitors the fidelity of the corresponding CW 
estimation, and is dependant on the corresponding CW rhythm 
change. Hence, unlike a PVC which imposes a dominant peak 
in all the γCW s, other morphological changes are expected to 
be tracked in a specific γCW. Fig. 4 shows the γCW s, ECG 
polargram and the T-polargram for a 17 beats segment of an 
ECG signal. The segment has two PVCs (3rd and 11th beats), 
three aberrated atrial premature beat (5th, 7th and 14th beats) 
and two non-conducted P wave abnormalities, i.e. blocked 
atrial premature beats (the last 2 beats). It can be seen that all 
the γCW s locate the PVC beat, as well as the aberrated atrial 
premature beat, which have different morphologies compared 
to the normal cycles. However, these two abnormalities are  
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Fig. 3.   Elements of PVC monitoring provided by the Bayesian framework. (a) ECG record 119, (b) γP, (c) γC, (d) γT, (e) signal polargram and the polar envelope, (f) 
P wave polargram, (g) QRS complex polargram, and (h) T wave polargram. 
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Fig. 4.   Effects of PVC, aberrated atrial premature beat and blocked atrial 
premature beat on signal fidelities and polargram. (a) ECG record 201, (b) 
γCW signals, (c) signal polargram, (d) T wave polargram. 
 
classified correctly in the polargram, since only the PVC 
spans outside the envelope. In contrast, the blocked atrial 
premature beats are identified only in γT, and have no effect 
on the outside of the polargram. 

For performance evaluation we chose 40 ECG records with 
the same lead configuration, i.e. modified lead II, which 
contains 5 types of signals; records with only normal beats 
(type A), records that contain only normal beats and PVCs 
(type B), records with no PVCs (type C), records with no 
normal beats (D) and records consisting normal beats and 
multiple arrhythmias (type E). We quantified our classifier 
performance using the most common metrics found in 
literature: accuracy, sensitivity, and positive predictivity. 
Accuracy (Ac) is perhaps the most crucial metric for 
determining overall system performance, and is defined as 
follows: 

100×
−

=
t

et
N

NNAc  

 
(11) 

where eN and tN represent the total number of classification 
errors and beats in the file, respectively. To express how 
successfully a classifier recognizes beats of a certain class 
without missing them, sensitivity (Sn) is used. Likewise, to 
measure how exclusively it classifies beats of a certain type, 
positive predictivity (+P) is used. These two metrics are given 
by: 

100×
+

=
FNTP

TPSn    ,    100×
+

=+
FPTP

TPP  

 
(12a,b) 

In these equations, TP, FP, and FN denote true positives, 
false positives and false negatives, respectively. Similar to 
[19], to evaluate the overall performance, the averages are 
weighted according to the number of beats of each class that 
were present in a file. The weighted measure is written as: 
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where 
ibn is the number of beats for the ith record, fn is the 

total number of records, and Mi
CL is the value of a specific 

measure for the ith record in the class “CL”. The file-by-file 
comprehensive results are provided in Table I. The results 
show the capability of the proposed wave-based Bayesian 
framework for PVC identification among other beat types. 
Performance evaluation results of type A signals shows that 
normal beats are accurately detected. It can be seen that for 
type B records, where no other abnormality than PVC is 
presented, the detection algorithm achieves an accuracy, 
sensitivity and positive predictivity of 100%. In other words, 
the algorithm is fully capable of discriminating PVCs and 
normal beats. Likewise, the results for type C records show 
that the method is capable of classifying normal beats and 
other abnormalities in the absence of PVC. In a similar 
manner, the analysis of type D records illustrates that the 
algorithm is still reliable for PVC detection, in absence of 
normal beats. Finally, for type E signals, where a mixture of 
abnormalities is often presented in the ECG, the PVC 
detection results are very promising. It can be seen that in 
most cases, the sensitivity of PVC detection, as well as the 
positive predictivity of other beat types, is equal to 100% 
which demonstrates that the PVCs are identified with 
minimum error and the algorithm misses no PVCs. The 
overall performance evaluation results show a weighted 
average Sn and +P of 98.77% and 97.47%, respectively. 
Evaluation results for the identification of other beat types is 
also well in the acceptable range, however, the polar-
envelope-based decision making should be modified to 
incorporate a wide range of abnormalities, which is beyond 
the scope of the current study. 

Furthermore, one should note the impressive results for 
records 105, 118, 213, 214, 215, and 223, compared to the 
results reported in [19]. These six records are the most 
difficult for PVC detection (sensitivity for records 105 and 
215 is less than 5%, while others result in Sn≈ 40% [19]). 
Hence, they are usually excluded from the database [21], [25]. 
To show the PVC detection capability of our proposed 
method, we have compared its performance to the file-by-file 
results of the NN-based approach in [19]. Statistical 
improvement results are shown in Fig. 5(a). It can be seen that 
for all cases, the proposed method enhances the mean 
improvement, while shifting the upper improvement quartile 
to the positive values. In addition, there are cases whose 
related improvements are very impressive, and can be 
followed by the upper side of the error-bars, indicating the 
maximum achieved improvement. Using the numerical 
evaluation results reported in the reference paper [19], it is 
also possible to compute the correlation coefficient (CC) as: 

⎟
⎟
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⎞
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⎜
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+=
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(14) 

where TN represents the number of elements predicted as false 
that are false (true negatives). The ratio in (14) scores 
positively correct predictions and negatively incorrect ones, 
and takes a value between -1 and 1. Accordingly, the CC 
measure falls into the interval of [0,1]. The more correct the 
method is, the closer CC would be to unity. Another metric 
for measuring the correctly predicted elements is 
specificity(Sp), given by: 

100×
+

=
TNFP

TNSp  

 
(15) 
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TABLE I 
 

COMPREHENSIVE RESULTS FOR PVC DETECTION USING THE PROPOSED ALGORITHM. 
 

 

Type 

 

Record 

 

Nt 

 

Ac (%) 

 

Normal 
 

PVC 
 

Other 

Nb Sn (%) +P (%) Nb Sn (%) +P (%) Nb Sn (%) +P (%) 

 

A 

115 1952 100.00 1952 100.00 100.00 0 --- --- 0 --- --- 

122 2474 100.00 2474 100.00 100.00 0 --- --- 0 --- --- 

 

 

B 

106 2027 100.00 1507 100.00 100.00 520 100.00 100.00 0 --- --- 

119 1987 100.00 1543 100.00 100.00 444 100.00 100.00 0 --- --- 

123 1517 100.00 1514 100.00 100.00 3 100.00 100.00 0 --- --- 

221 2427 100.00 2031 100.00 100.00 396 100.00 100.00 0 --- --- 

230 2255 100.00 2254 100.00 100.00 1 100.00 100.00 0 --- --- 

 

 

 

 

C 

101 1864 100.00 1859 100.00 100.00 0 --- --- 5 100.00 100.00 

103 2083 100.00 2081 100.00 100.00 0 --- --- 2 100.00 100.00 

112 2537 99.96 2535 100.00 99.96 0 --- --- 2 50.00 100.00 

113 1794 100.00 1788 100.00 100.00 0 --- --- 6 100.00 100.00 

117 1534 99.93 1533 100.00 99.93 0 --- --- 1 0.00 100.00 

212 2747 99.82 922 99.46 100.00 0 --- --- 1825 100.00 99.73 

220 2046 98.10 1952 99.39 98.63 0 --- --- 94 87.23 75.23 

 

 

D 

107 2136 99.91 0 --- --- 59 96.61 100.00 2077 100.00 99.90 

109 2530 99.96 0 --- --- 38 100.00 97.44 2492 99.96 100.00 

118 2277 100.00 0 --- --- 16 100.00 100.00 2261 100.00 100.00 

214 2260 100.00 0 --- --- 256 100.00 100.00 2004 100.00 100.00 

 

 

 

 

 

 

 

 

 

 

 

E 

100 2271 99.43 2237 100.00 99.42 1 100.00 100.00 33 60.61 100.00 

102 2185 98.81 99 100.00 79.20 4 100.00 100.00 2082 98.75 100.00 

105 2572 99.30 2501 100.00 100.00 41 100.00 69.50 30 40.00 100.00 

114 1879 99.79 1820 100.00 99.89 43 100.00 100.00 16 75.00 100.00 

116 2411 99.50 2301 99.87 100.00 109 91.74 97.09 1 100.00 100.00 

121 1862 99.95 1860 100.00 99.95 1 100.00 100.00 1 0.00 100.00 

200 2600 98.88 1742 100.00 98.36 826 100.00 100.00 32 9.37 100.00 

201 1963 98.11 1625 100.00 98.60 198 95.96 93.60 140 79.28 93.27 

202 2135 98.59 2060 100.00 98.89 19 89.47 77.27 56 50.00 93.33 

203 2979 98.19 2528 98.10 99.68 444 97.35 91.49 7 57.14 22.22 

205 2655 99.81 2570 100.00 99.80 71 100.00 100.00 14 64.28 100.00 

208 2953 92.92 1585 98.93 89.14 992 99.90 100.00 376 49.20 91.13 

210 2648 98.86 2421 99.83 99.26 194 98.97 96.97 33 27.27 60.00 

213 3249 96.74 2639 100.00 100.00 220 95.90 68.50 390 75.13 97.02 

215 3361 98.93 3194 99.47 100.00 164 88.41 100.00 3 100.00 8.33 

217 2208 96.47 244 83.20 100.00 162 98.76 82.05 1802 98.06 97.62 

219 2154 99.40 2082 100.00 99.38 64 89.06 100.00 8 25.00 100.00 

223 2604 95.77 2028 96.74 98.34 473 97.67 100.00 103 67.96 51.47 

228 2053 98.88 1688 98.87 99.88 362 99.45 100.00 3 33.33 4.55 

231 1570 98.92 314 100.00 94.59 2 100.00 100.00 1254 98.64 100.00 

233 3077 99.90 2229 100.00 100.00 830 100.00 100.00 18 83.33 100.00 

234 2752 99.38 2699 100.00 99.37 3 100.00 100.00 50 66.00 100.00 

Total 92588 --- 68411 --- --- 6956 --- --- 17221 --- --- 

Mean 2314.7 99.10 1710.27 89.35 88.81 1739.0 75.98 74.35 4305.2 57.39 72.34 

Standard Deviation --- 1.44 --- 30.28 30.20 --- 41.58 41.32 --- 39.58 41.67 

Weighted Average --- 99.01 --- 99.66 99.38 --- 98.77 97.47 --- 96.54 98.81 
 

 
 

 

Having computed the values of Sn and Sp, a plot of Sn vs. 
Sp, namely the receiver operating characteristic (ROC) curve, 
is built for the same classification method using a series of 

detection results. However, since we do not vary the filter 
parameters and we have no thresholds to obtain stepwise Sn 
and Sp values, the best classification method is the one that 
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Fig. 5.   Performance comparison of the proposed method to the wavelet-
based NN algorithm [17], evaluated on the same 40 records from MIT-BIH 
Arrhythmia Database. (a) Improvement statistics for the whole database 
shown with box plots. The box lines show the lower quartile, median 
(dotted) and upper quartile improvement values, and the error-bars indicate 
the min and max improvement values. The mean improvement is shown with 
a cross symbol, (b)-(d) comparative results for PVC detection using type B, 
type D, and type E signals, respectively. The results of our proposed method 
are shown by box bars while those of [19] are shown with cylindrical bars. 

 

describes the largest area under the curve (AUC).  
In order to investigate the true positive PVC detection 

performance, we have chosen type B, D and E signals for 
analysis. Fig 5(b-d) show the mean values of different metrics 
for these types of records, evaluated using the proposed 
method (box bars) and the NN-based technique [19] 
(cylindrical bars). The figure illustrates that in contrast to the 
NN-based method, all metrics’ values for the proposed 
algorithm are over 90%, and are often very close to 100%.  

Furthermore, the improvement in PVC detection is obvious 
by visual comparison of the height of cylindrical bars to that 

of box bars. Specifically, we note the improvement in 
sensitivity, which demonstrates that the Bayesian method has 
much fewer FN detections. Hence, the minimum number of 
PVCs is misclassified by the proposed approach. In other 
words, unlike the method in [19] which is based on feature 
extraction and neural network classification with no temporal 
memory, our proposed technique benefits from the tracking 
potential of the Bayesian framework to obtain much better 
detection accuracies for PVCs. 

To appreciate the merits of the proposed method over 
conventional PVC classification algorithms and to ensure its 
ability to locate PVCs, we have compared our results to those 
of some benchmark techniques in the literature. The results 
are reported in table II. Since the results of methods are 
reported for different databases, we have also provided the 
number of ECG records (Nrec) and number of PVCs (NPVC) 
used in each method. It can be seen from table II that our 
proposed method provides a higher Ac and Sn, while 
preserving the +P in the acceptable range. Additionally, 
taking the number of analyzed PVCs into consideration, the 
+P results of our algorithm is comparable to and usually 
superior to the other methods, which shows the ability of the 
proposed framework to distinguish the PVCs from other beat 
types more accurately. 

Another interesting feature of the proposed method is that 
the PVC detection depends upon both the γCW and the polar 
envelope, which together enables the algorithm to distinguish 
between PVCs and rhythms with similar morphologies, which 
is a significant problem in feature-based methods. As an 
example, previous studies could not distinguish between 
PVCs and left bundle branch blocks (LBBB) beats [19], [21]. 
LBBB is a cardiac conduction abnormality seen on ECG, in 
which activation of the left ventricle is delayed, which results 
in the left ventricle contracting later than the right ventricle. 
The criteria to diagnose a LBBB are QRS widening and T 
wave discordance, in which the T wave should be deflected 
opposite the terminal deflection of the QRS complex. This is 
similar to PVC, however, in the case of a PVC, the P wave is 
fused in the QRS complex and the dominant T wave is not 
essentially deflected opposite the terminal deflection of the 
QRS complex. Hence, using the time interval features and a 
NN [17] or wavelet features and fuzzy NN [21], it is very 
difficult to distinguish between a PVC and a LBBB beat. For 
instance, Shyu et al [21] reported 405 LBBB as FN detections 
while characterizing PVCs. The potential of the Bayesian 
framework enables it to correctly identify LBBB as non-
PVCs. This is due to the polar envelope formation based on 
the LBBB, which spans a different partition from the PVCs. 
Specifically, γCW identifies the LBBB as a monotone rhythm 
in ECG, whereas the PVC is characterized as a rhythm 
change. This is obvious by comparing the results of our 
algorithm for record 214 (Sn= 100%, +P=100%) to the 
reported results of [19] for the same record (Sn=47.66% , 
+P=92.42%), which includes 256 PVCs and 1996 LBBB 
beats. Fig. 6 illustrates a segment of record 214, the signal and 
T wave polargrams and the signal fidelity γT corresponding to 
the T wave. 

I. DISCUSSION AND CONCLUSION 
In this paper, a wave-based Bayesian framework was 

presented and validated for PVC beat detection which is 
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TABLE II 
 

PERFORMANCE COMPARISON OF BENCHMARK METHODS FOR PVC 
DETECTION TO THE PROPOSED  MODEL-BASED METHOD. 

 

 
capable of running on a single ECG lead. The method is based 
on an EKF algorithm that incorporates the characteristic 
waves of the ECG into a dynamical model. By separating the 
Gaussian functions, and using 2 kernels for each asymmetric 
wave, a state space model was constructed. The proposed set 
of equations aims at integrating into the ECG model a 
mechanism that estimates an ECG signal as a combination of 
finite characteristic waveforms, each of which represents a 
particular physiological state of the heart. According to this 
specific model, the EKF structure provides a means of 
tracking the behavior of the CWs, throughout the filtering 
procedure.  

From a filtering point of view, KFs can be thought of as 
adaptive filters that continuously move the location of the 
poles and zeros of their transfer functions, according to the 
signal or noise content of the input observations and the prior 
model of the signal dynamics. The filter structure is based 
upon a unique dynamical model, which is adapted to the 
observations according to the propagation equations. In this 
way, we can track the reliability of the estimations, as well as 
the fidelity of the filter. Moreover, this feature allows the filter 
to adapt with different spectral shapes and temporal non-
stationarities, since the variance of the observation noise in (4) 
represents the degree of reliability of a single observation, as 
well as the degree of adaptively tracking the input noisy 
measurement. Based on this concept, we introduced the signal 
fidelity, γCW, corresponding to each CW, and monitored these 
parameters to detect PVC occurrence. Furthermore, a polar 
representation was introduced to distinguish between the 
rhythm changes that occur inside the polar envelope and 
PVCs, which span a different portion of the polargram. The 
designed filter was applied to standard ECG databases, and 
compared to other published methods. The results 
demonstrate the filter’s capability in tracking the PVCs. It was 
also shown that the γCW’s are capable of discrimination 
between PVCs and other abnormalities that exhibit a defect in 
a specific CW. However, for those abnormalities that affect 
the γCW’s the same manner as would a PVC, the polargram is 
used to verify the occurrence outside the polar envelope. 

Performance evaluation results showed that the developed 
method provides a reliable and accurate PVC detection, 
providing an accuracy of 98.83%, weighted average 
specificity of 99.29% for normal and 98.43% for PVC, and a 
mean positive predictivity of 99.75% for normal and 96.68% 
for PVC, which is well within the acceptable range, and is 
superior to the previously reported results. Moreover, in 
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Fig. 6.   Distinguishing LBBB and PVCs for a typical ECG signal. (a) ECG 
record 214, (b) γT, (c) signal polargram and the polar envelope, (d) T wave 
polargram. 

 
comparison to other published methods for PVC detection, 
our proposed approach provides a superior performance, and 
there is no need to employ decision rules based on comparison 
against thresholds, feature extraction, training, and selection 
of the classifiers’ structure. Another point of interest is the 
capability of the algorithm to fully determine the PVCs, with 
Ac, Sn and +P equal to 100%, for the records that contain 
only two specific beat types: normal sinus beats and PVCs. It 
was also shown that the proposed method is applicable to 
reliable PVC detection in presence of other abnormalities, and 
in particular left bundle branch block.  

It should be noted that the initial value for the state vector 
as well as the selection of the covariance matrices of the 
process and the measurement noise will influence the 
trajectory of the estimated vectors. The dependence of the 
results on these initial estimations is the major drawback of 
the proposed method. Hence, an automated procedure for 
reliable initialization was proposed. Although the Bayesian 
method we present depends on the initial values, the 

method is still more efficient compared to NN-based 
approaches since the initialization and training of the EKF 
parameters can be performed using just a few early cycles. 

Due to the recursive structure of the KF, the proposed 
method is also computationally tractable and of special 
interest for real-time applications. Generally, the computation 
time of this method is linearly proportional to the signal 
length in samples. For the currently developed MATLAB® 
code, the computation time is already close to real time using 
a Core Duo 1.86 GHz CPU. Compilation and optimization of 
this code, or conversion into a low-level language for use in 
pre-processing units of clinical monitoring systems would 
result in a significant increase in performance speed. This 
would allow the algorithm to run on multiple ECG leads in 
real time on most embedded systems which are increasingly 
available with on-board DSP chipsets. 
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