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Cardiac output (CO) is a cardinal
parameter of cardiovascular
state, and a fundamental deter-
minant of global oxygen deliv-

ery. Historically, routine clinical measure-
ment of CO has been limited to critically-ill
patients, often with invasive indicator-
dilution methods such as thermodilution
(COTD). Alternative CO measurement strat-
egies have not replaced indicator-dilution
methods in critical care, and outside the
intensive care unit, imprecise metrics (e.g.,
blood pressure, urine output, mental sta-
tus, etc.) are used to assess CO and circu-
latory adequacy.

For more than a century (1), the
premise that relative changes in CO could
be estimated by analysis of the arterial
blood pressure (ABP) waveform has cap-
tured the attention of many investigators.
Today, peripheral ABP is routinely available
in intensive care unit (ICU) patients, and
noninvasive devices exist to measure pe-
ripheral ABP in noncritically-ill popula-
tions (2,3). Tracking changes in CO contin-
uously via ABP waveform analysis, without
the risks of central catheterization, may be
valuable both within and beyond the ICU
setting: such a “vital sign” might be a sen-
sitive and specific indicator of circulatory

pathology and useful in optimizing thera-
pies such as volume resuscitation and cat-
echolamine infusions. Today, several com-
mercially-available methods offer
competing algorithms that derive CO from
the ABP waveform (4–6). Other algorithms
have been proposed in the medical litera-
ture but not incorporated into commercial
products (7–13). There are major chal-
lenges that each of these algorithms must
confront to accurately estimate global
blood flow from a peripheral blood pressure
waveform. For instance, the relationship
between arterial pressure and volume (i.e.,
compliance) varies from person to person,
and for any given individual, compliance
also varies as a nonlinear function of ABP
and adrenergic state. Furthermore, the
pressure pulse represents the superposition
of antegrade waves that drive forward flow
as well as retrograde reflected waves that
retard forward flow. To date, the relative
capability of the various algorithms is diffi-
cult to ascertain, because published evalu-
ations are performed in different sets of
patients with different physiologic ranges
and different pathologies, making direct
comparisons between studies problematic.

Objective: The value of different algorithms that estimate
cardiac output (CO) by analysis of a peripheral arterial blood
pressure (ABP) waveform has not been definitively identified.
In this investigation, we developed a testing data set contain-
ing a large number of radial ABP waveform segments and
contemporaneous reference CO by thermodilution measure-
ments, collected in an intensive care unit (ICU) patient popu-
lation during routine clinical operations. We employed this
data set to evaluate a set of investigational algorithms, and to
establish a public resource for the meaningful comparison of
alternative CO-from-ABP algorithms.

Design: A retrospective comparative analysis of eight
investigational CO-from-ABP algorithms using the Multiparam-
eter Intelligent Monitoring in Intensive Care II database.

Setting: Mixed medical/surgical ICU of a university hospital.
Patients: A total of 120 cases.
Interventions: None.
Measurements: CO estimated by eight investigational CO-

from-ABP algorithms, and COTD as a reference.
Main Results: All investigational methods were significantly

better than mean arterial pressure (MAP) at estimating direction
changes in COTD. Only the formula proposed by Liljestrand and
Zander in 1928 was a significantly better quantitative estimator of
COTD compared with MAP (95% limits-of-agreement with COTD:
�1.76/�1.41 L/min versus �2.20/�1.82 L/min, respectively; p <
0.001, per the Kolmogorov-Smirnov test). The Liljestrand method
was even more accurate when applied to the cleanest ABP wave-
forms. Other investigational algorithms were not significantly
superior to MAP as quantitative estimators of CO.

Conclusions: Based on ABP data recorded during routine in-
tensive care unit (ICU) operations, the Liljestrand and Zander
method is a better estimator of COTD than MAP alone. Our at-
tempts to fully replicate commercially-available methods were
unsuccessful, and these methods could not be evaluated. How-
ever, the data set is publicly and freely available, and developers
and vendors of CO-from-ABP algorithms are invited to test their
methods using these data. (Crit Care Med 2009; 37:72–80)
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In this investigation, we used a subset
of the Multiparameter Intelligent Moni-
toring in Intensive Care II (MIMIC II)
database (14) containing radial artery
waveform data and contemporaneous ref-
erence COTD measurements to evaluate
eight CO-from-ABP algorithms previ-
ously described in the literature. The test
data were collected in an ICU patient pop-
ulation during routine clinical operation
and contain “real-world” (e.g., not artifi-
cially pristine) ICU physiologic data that
can be fairly applied to any number of
disparate CO-from-ABP algorithms, es-
tablishing a resource for their meaning-
ful comparison. Furthermore, we are
making this data set publicly available to
support the evaluation and further devel-
opment of CO-from-ABP techniques
(available at http://www.physionet.org/
physiotools/cardiac-output/). The MIMIC
II COTD/ABP data set is in this sense an
analog of the public access arrhythmia
databases that have played an indispens-
able role in the development, refinement,
and— ultimately—widespread accep-
tance of automated algorithms for elec-
trocardiogram analysis (15).

MATERIALS AND METHODS

Database Development. Our COTD/ABP
data set was extracted from the MIMIC II da-
tabase (14). The MIMIC II database includes
physiologic and wide-ranging clinical data
from over 2,500 ICU patients (medical ICU,
critical care unit, and surgical ICU) hospital-
ized at the Beth Israel Deaconess Medical Cen-
ter, Boston, USA between 2001 and 2005. Ra-
dial ABP waveform data from the M1006B
invasive pressure module and COTD data (tem-
porally resolved to the nearest minute) were
originally sourced from Philips CMS bedside
patient monitors (Philips Medical Systems,
Andover, MA), so both shared the same elec-
tronic time reference. Waveforms were sam-
pled at 125 Hz with 8 bit resolution. The
patients’ gender and age were input by the
nursing staff as part of routine clinical opera-
tions, using the Philips CareVue system, and
these archived data were another component
of the MIMIC II database. Additional details
about the MIMIC II database are available in
(14). The data were collected and analyzed
with institutional approval by the local IRB.

We identified and extracted MIMIC II cases
with COTD measurements and one-minute-
long segments of radial ABP waveform that
immediately preceded the COTD measurement
(up to and including the time of the COTD

measurement). All algorithms used in our
analyses were implemented in Matlab (Math-
works, Natick, MA). These algorithms, and the
MIMIC II COTD/ABP data set, have been con-
tributed to PhysioToolkit (16) and are avail-

able for free public use (http://www.physionet.
org/physiotools/cardiac-output/).

ABP Signal Processing. Within each
minute-long ABP segment, individual heart
beats were identified using a Matlab (Math-
works, Natick, MA) implementation of an al-
gorithm by Zong (17). The waveform quality
of each ABP pulse was assessed automatically
using a signal abnormality index (SAI) algo-
rithm (18). A set of features from each ABP
pulse was computed, including the peak (sys-
tolic blood pressure, [SBP]), trough (diastolic
blood pressure [DBP]), mean arterial pressure
(MAP) and pulse pressure (SBP minus DBP);
see Figure 1. Each ABP pulse’s average of
negative slopes was computed, providing a
metric of spiky, nonphysiologic noise in the
ABP pulse waveform. After computing the pre-
ceding features for an ABP pulse, the SAI al-
gorithm checked that all were within normal
limits (18). The SAI also checked that the
features’ variations from one ABP pulse to the
next were within normal limits. The SAI algo-
rithm reported a binary ‘normal’ or ‘abnormal’
rating for each ABP pulse, depending if all the
normality criteria were met (18). Any abnor-
mal beat was excluded from further analysis. If
a given minute-long ABP segment contained
more than 40% of abnormal beats, the entire
segment (and its corresponding COTD) was
excluded from further analysis.

In addition, we estimated the duration of
each entire beat and its systolic interval. There
is no single widely accepted method to identify
the systolic interval in a peripheral ABP pulse
(in contrast to a central ABP pulse, the di-
crotic notch—if present—in a peripheral ABP
pulse does not indicate closure of the aortic
valve). Therefore, we chose two alternative cri-
teria to identify the end of systole. First, we
computed a heuristic estimate of systolic du-
ration, (0.3 ��beat_period), originally sug-
gested as an approximation of the QT interval
(19). Second, we identified the point after SBP
with the lowest nonnegative slope, as shown
in Figure 1. In practice, this method located
the trough of the dicrotic notch, or any rela-
tive plateau which persisted for two or more
ABP samples.

Investigational CO-from-ABP
Algorithms

The investigational algorithms are sum-
marized in Table 1. Most algorithms predict
stroke volume, and CO is taken as the product
of median stroke volume and median heart
rate over the one-minute window. Many of the
algorithms were initially intended for a central
aortic ABP waveform; in this investigation, we
explored their application to a peripheral ra-
dial ABP.

MAP is positively but imperfectly corre-
lated with CO. Of course, variable degrees of
systemic vasoconstriction or dilation (which
affect peripheral vascular resistance [PVR]), as
well as variable venous pressure, make MAP an

unreliable predictor of CO. ABP waveform
analysis assumes that other features in the
waveform are less affected by confounders
such as PVR, and are thus more reliable cor-
relates of CO. MAP serves as our control
method against which eight investigational
CO-from-ABP methods are compared.

(A) Pulse Pressure. In 1904, Erlanger and
Hooker suggested that the pulse pressure is a
surrogate of stroke volume (7). This notion
naturally arises from a basic Windkessel model
of the arterial tree, in which the arterial sys-
tem is considered a single elastic tank, with
flow exiting through a distal resistive element.
Assuming that cardiac ejection is near-
instantaneous, then the product of pulse pres-
sure and heart rate is a predictor of CO.

(B) Liljestrand and Zander. The compli-
ance of the arterial tree varies with blood
pressure. The Liljestrand algorithm accounts
for the dependence of arterial compliance on
arterial pressure by scaling its CO estimate to
the reciprocal of MAP (8).

(C) Systolic Area. A number of methods
treat the arterial tree as a long viscoelastic
tube, a “transmission line” model. Within a
transmission line, pressure gradients acceler-
ate or decelerate flow. By assuming that ret-
rograde (reflected) pressure waves are negligi-
ble during systole, it is possible to estimate the
pressure gradient and the forward flow from
an ABP waveform. Specifically, stroke volume
is proportional to the area under the systolic
portion of the ABP pulse (9, 10).

(D) Kouchoukos Correction. A potential
source of error is the assumption that cardiac
ejection is so rapid that no blood flows out of
the arterial tree during systole (“run-off”).
Kouchoukos proposed a simple correction fac-
tor, related to the ratio of systolic-to-diastolic
duration (11); this was a variation of an earlier
method proposed by Warner (12).

(E) Diastolic Decay. Bourgeois developed
an algorithm to quantify systolic run-off (13).
This method leads to an estimation of PVR
(CO can then computed from MAP/PVR, as-
suming venous pressure is negligible). Bour-
geois’ method is based on a constant compli-
ance Windkessel model. In such an idealized
model, a mono-exponential diastolic decay
(due to the arterial run-off) is expected in the
ABP pulse waveform, and that diastolic
curve changes solely as a function of PVR
(20). Our diastolic decay method adapts the
original Bourgeois method to the radial ABP
(and thus its performance is likely to be
degraded significantly due to the loss of the
dicrotic notch). We fit a monoexponential
curve to just two points of each ABP pulse,
taking the peak of systole as the onset of a
mono-exponential decay, and the trough of
diastole as its end (21).

(F) Herd. Systolic blood pressure may be
prone to amplification due to early reflected
waves. Herd et al proposed an empirical
method, the difference between mean and di-
astolic pressure, as a predictor of stroke vol-
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ume that would be less confounded by this
effect (22).

(G) Corrected Impedance. Wesseling’s Cor-
rected Impedance method provides an empir-
ical correction to the systolic area-under-the-
ABP curve approach, to account for some of
the sources of error described above (23).

(H) AC Power. Reportedly the commercial
LiDCO Plus PulseCO method of pulse power
analysis (LiDCO Ltd., London, England) makes
use of the power of the ABP signal, deriving the
“beat power factor (r.m.s.—root mean square)
which is proportional to the nominal stroke
volume ejected into the aorta” (4). This
method also entails additional processing
steps that are not comprehensively described;
therefore we could not independently replicate
their methodology. Rather we assessed how
well the stroke volume could be estimated
with just the computed ABP waveform root-
mean-square, which is one component of the
LiDCO Plus PulseCO method.

We attempted to evaluate two additional
methods that are distributed commercially,
Modelflow (Finapres Medical Systems,
Amsterdam, The Netherlands) and PiCCO
(PULSION Medical Systems, Munich, Ger-
many), by developing new software routines
that were consistent with published details
about these algorithms. However, the results
of our implementations were unsatisfactory
and we decided to exclude these algorithms
from our trial. This is considered further in
the Discussion section.

Calibration

We applied the investigational algorithms
described above (and summarized in Table 1)
to the data of subjects who had at least two
paired measurements of COTD and a contem-
poraneous, minute-long segment of ABP
waveform of sufficient quality. Each algorithm
was calibrated to each patient, using two dif-
ferent methods. First, the “best-possible cali-
bration factor” was computed, C1 (Fig. 2). C1
was selected to minimize the root-mean-
square of the differences of each pairing of
COTD and CO-from-ABP. It provides the best
accuracy that could be obtained with a single
calibration factor. Next, each algorithm was
calibrated to each patient using a different
methodology, C2 (Fig. 2). C2 was calculated
only from the first pairing of the CO estimate
and COTD. C2 describes an algorithm’s lower
limits of performance, if caregivers rely on just
one initial pairing of COTD and CO-from-ABP
to calibrate the algorithm. All investigational
algorithms were compared against MAP as
predictors of CO. MAP was calibrated exactly
like other algorithms, i.e., C1 and C2.

Statistical Analysis

Each paired CO-from-ABP and COTD had
an identifiable “error” (their difference). The
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Figure 1. Five examples of arterial blood pressure waveforms and their key features as identified by our
automated algorithms. The horizontal axis is sample number, with 125 samples � one second. Onset point
of each beat is indicated by an asterisk “*”; end of systole, estimated by 0.3 � �beat_period, is indicated by
“X”; end of systole, estimated by the ‘lowest nonnegative slope’ method, is indicated by a “0”.

Table 1. Investigational CO-from-ABP algorithms

(CO � Stroke Volume � HR)

Pulse pressure (7) Stroke volume � k � �SBP � DBP�

Liljestrand (8) Stroke volume �
k � �SBP � DBP�

�SBP � DBP�
Systolic area (9, 10) Stroke volume � k � �

Systole ABP�t�dt
Systolic area with Kouchoukos

correction (11)
Stroke volume �

k � �1 �
DurationSystole

DurationDiastole
� � �

Systole ABP�t�dt

Diastolic decaya Solves for beat-to-beat peripheral vascular resistance, fitting
a monoexponential curve to each ABP pulse’s peak of
systole and trough of diastole, where:
PDiastolic � PSystole � e�k � time/PVR

Herd (22) Stroke volume � k � �MAP � DBP�

Corrected impedance (23) Stroke volume �
k � �163 � HR � 0.48 � MAP� � �

Systole ABP�t�dt

AC power (root-mean-square) Stroke volume � k � �1
T
�

T�ABP�t� � MAP�2dt

where: T � duration of heart beat

aAdopted from Circ Res 1976; 39:15–24.
CO, cardiac output; ABP, arterial blood pressure; HR, heart rate; SBP, systolic blood pressure; DBP,

diastolic blood pressure; MAP, mean arterial pressure; AC, alternating current.
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distribution of errors for each investigational
algorithm was computed, for both the C1 and
C2 calibration methods. From these error dis-
tributions, 95% limits-of-agreement were
computed for each CO-from-ABP algorithm,
per Bland-Altman methodology (24).

We tested if the error distribution for an
investigational algorithm was statistically differ-
ent from the error distribution of “calibrated
MAP” (using the C1 data), using the Kolmog-
orov-Smirnov test (in Matlab). The Kolmogorov-
Smirnov test can detect if one error distribution
has a significantly wider limits-of-agreement.
We did not apply statistical methods such as the
Student’s t test, repeated measures analysis of
variance, or mixed-effects models, because these
assess if the means of the distributions are dif-
ferent. Because we calibrated the investigational
methods to the reference method, the means of
these error distributions were expected to be
near-zero, i.e., minimal measurement biases, so
these tests would be nonsignificant.

For each subject, we also computed the root-
mean-square of the CO-from-ABP versus COTD

errors. This yielded a number that measures the
width of the error distribution, for a given sub-

ject and a given algorithm. Grouping all the
r.m.s. values for a given algorithm, we applied a
paired Student’s t test versus calibrated MAP.
This statistical methodology is quite conserva-
tive, treating repeated observations in a given
subject as only one datum (one r.m.s. value).

Finally, we computed the frequency with
which directional changes (i.e., increase or
decrease) of each CO-from-ABP algorithm
agreed with COTD. To avoid analysis of trivial
changes in COTD we identified the single larg-
est magnitude percent change in each patient
record (increase or decrease) and computed
the incidence of algorithm/COTD directional
agreement. We tested if each algorithm was
significantly different from the performance of
“calibrated MAP” using McNemar’s test.

RESULTS

Table 2 shows the characteristics of the
120 subjects analyzed. Typical of an ICU
population, the subjects were older (age 69
yrs � 12 SD), 67% were male. The average
length of stay in the ICU was slightly over 2
days with an average of ten COTD measure-

ments per patient. On average, each sub-
jects’ COTD varied by �46%, PVR varied by
�50%, and MAP varied by �32%.

We excluded 13.7% of the available
minute-long ABP data segments (and
their paired COTD measurements) which
did not pass our data quality criteria
(those segments contained more than
40% of abnormal ABP pulses). Table 3,
tabulates the 95% limits-of-agreement
for eight of our investigational algorithms
using both the C1 and C2 calibration meth-
ods. The Liljestrand algorithm performed
the best, and was statistically superior to
calibrated MAP by the Kolmogorov-Smir-
nov test. Figure 3 plots the differences (“er-
rors”) between the Liljestrand method and
COTD, and subplots in Figure 3 show error
plotted as a function of various physiologic
parameters. One notable trend is that the
Liljestrand error grew larger as PVR less-
ened.

In 79 cases the largest magnitude
change in COTD was an increase (ranging
from �5% to �192%, with an average of
�65%), and in 29 cases the largest mag-
nitude change was a decrease (ranging
from �10% to �56%, with an average of
�32%). For these largest magnitude
changes, all eight of the reported algo-
rithms showed similar frequencies of di-
rectional agreement with COTD, and all
were significantly different from cali-
brated MAP. See Table 3.

The results in Table 3 and Figure 3 are
exclusive of the minute-long ABP segments
with �40% abnormal beats. After recom-
puting the Liljestrand 95% limits-of-
agreement for all data segments (i.e., re-
gardless of data quality) the Liljestrand
limits-of-agreement grew to �1.88/�1.57
L/min. By contrast, applying more strin-
gent ABP quality criteria (analyzing
minute-long ABP waveform segments with
no more than 5% of abnormal beats), the
limits-of-agreement were reduced to
�1.48/�1.29 L/min, although this more
stringent ABP quality criteria excluded
40% of the available ABP data segments.

Some of the algorithms required de-
termining the end-of-systole in a radial
ABP pulse. The results in Table 3 were
all based on our heuristic method
0.3 ��beat_period. For select algo-
rithms, superscripts in Table 3 report
the results for an alternative method of
identifying the end-of-systole (the “low-
est nonnegative slope” method), which
trended toward worse results.

Grouping all the subjects’ r.m.s. error
values for each algorithm and for cali-
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Figure 2. We studied two methods of calibrating the algorithms for a subject. In C1 the “best-possible
calibration factor” was computed, minimizing the root-mean-square of the difference of each pairing
of cardiac output thermadilution (COTD) (stem plots) and the corresponding CO-from-arterial blood
pressure estimations (black line). In C2, the first pairing of the CO-from-arterial blood pressure
estimate (gray line) and COTD was used to establish the calibration factor, which was then used for all
subsequent CO estimation.

Table 2. Characteristics and physiologic variation of the study population

Units Mean � SD N

Study population
Age yr 69 � 12 120
Stay duration day 2.3 � 2.2 120
COTD measurements per patient 10 � 8 120
COTD range per patient L/min 2.3 � 1.2 120
Mean arterial pressure range per patient mm Hg 24 � 10 120
Peripheral vascular resistance range per patient mm Hg�s/ml 0.5 � 0.3 120

Pooled data
COTD L/min 5 � 2 1164
Mean arterial pressure mm Hg 75 � 10 1164
Heart rate bpm 88 � 17 1164
Peripheral vascular resistance mm Hg�s/ml 1 � 0.4 1164

COTD, cardiac output thermadilution.
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brated MAP, we compared the algo-
rithms’ distributions versus calibrated
MAP, using the paired Student’s t test.

This statistical methodology was more
conservative, treating repeated observa-
tions in a given subject as only one datum

(one r.m.s. value). We found that the
Liljestrand method was again signifi-
cantly better than calibrated MAP (p 	
0.01). The Herd method yielded p � 0.04.
The other p values were greater than
0.05.

DISCUSSION

In 1983, Wesseling pointed out that
the ability to monitor CO continuously by
analyzing the ABP waveform could pro-
vide “an early warning signal if cardiac
output would rise or fall suddenly, to
adjust drug rates and infusion rates 
. . .�
to sense bleeding 
. . .� to get a true mean
cardiac output under arrhythmias, etc
(23).” Yet the optimal method and clini-
cal applicability of ABP waveform analysis
have not been definitively identified. Per-
haps this is in part because these algo-
rithms haven’t been adequately evaluated
in a comparative manner (25).

In this investigation, we found that all
eight of the investigational algorithms
were superior to MAP as directional,
qualitative indicators of major changes in
COTD. Although the methods offer similar
information about major directional
changes in COTD (i.e., about 78%), they
can differ drastically in magnitude. Only
the Liljestrand method was a superior
quantitative predictor of CO than cali-
brated MAP, which is essential for mean-
ingful interpretation of directional
changes. The Liljestrand predictor may
be a useful parameter for intelligent
monitoring algorithms when a patient’s
radial ABP is measured, providing more
information than MAP alone. As quanti-
tative predictors of CO, the other investi-
gational algorithms failed to surpass cali-
brated MAP, including several algorithms
that we developed which incorporated pub-
lically-disclosed aspects of the Modelflow,

Figure 3. A, Bland-Altman plot comparing cardiac output (CO) estimated by the algorithm (Liljestrand,
using the C1 calibration methodology) with CO thermadilution (COTD). 95% limits-of-agreement for
this algorithm and the other investigational algorithm are summarized in Table 3. B, Liljestrand
algorithm estimation error as a function of several variables. Bins of equal sample sizes are illustrated.
Rectangular bars represent 95% limits-of-agreement for each bin. For example, as shown, CO
estimation error decreases as peripheral vascular resistance (PVR) increases. MAP, mean arterial
pressure; HR, heart rate.

Table 3. Agreement between thermodilution CO and investigational CO-from-ABP algorithms

Investigational Predictors of COTD

“Best Possible Single Calibration”
(C1) 95% Limits Agreement

(�L/min)

KS Test vs. Mean
Arterial Pressure

(p)

“First Pairing
Calibration” (C2) 95%

Limits Agreement
(�L/min)

% Agreement of Directional
�’s vs. COTD

Liljestrand �1.76/�1.41 0.0001 �2.81/�2.04 78b

Corrected impedance �1.91/�1.57a 	0.01 �3.39/�2.28 78b

Pulse pressure �2.07/�1.73 �0.05 �3.05/�2.76 74b

Systolic area �2.07/�1.73c �0.05 �2.85/�3.05 77b

Systolic area with Kouchoukos correction �2.08/�1.71 �0.05 �3.20/�2.89 78b

AC power (root-mean-square) �2.09/�1.73 �0.05 �3.12/�2.78 79b

Diastolic decay �2.23/�1.77 �0.05 �3.22/�2.57 78b

Mean arterial pressure �2.20/�1.82 — �3.19/�3.42 56
Herd �2.66/�1.89 �0.05 �3.65/�3.16 78b

CO, cardiac output; ABP, arterial blood pressure; COTD, CO thermadilution; KS, Kolmogorov-Smirnov; AC, alternating current.
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PulseCO, and PiCCO methodologies. We
conclude that it is difficult to satisfactorily
implement proprietary methods. As we
were unable to independently evaluate
these proprietary algorithms, it under-
scores the need for a fair method for pub-
licly comparing competing CO-from-ABP
methodologies.

Such evaluation could be enabled by
one or more publicly available testing da-
tabases. In the 1970s, this laboratory
made the Beth Israel Hospital-Massachu-
setts Institute of Technology Arrhythmia
database publicly available (15). That da-
tabase, together with other public access
databases, e.g., the European ST-T data-
base, promoted the development of auto-
mated electrocardiogram (ECG) interpre-
tation algorithms. Thirty years later,
computerized ECG arrhythmia analysis
has evolved so that it is now standard in
bedside monitors and even automated de-
fibrillators.

The Database. Academic and commer-
cial developers can freely access and
download the MIMIC II COTD/ABP data
set (www.physionet.org/physiotools/
cardiac-output/), apply their algorithms,

and report their results. This database
contains a large number of radial ABP
waveforms and paired measurements of
COTD (over 1000 paired data points from
over 100 patients), archived during rou-
tine clinical operations. We observe that
the typical record shows distinct intervals
of relative stability and other intervals of
dynamic physiologic change, as in the
example in Figure 4. The range of phys-
iologic states in the overall database is
summarized in Table 2. The data quality
in this data set—motion artifacts, inci-
dence of dampened catheters, etc.—is
consistent with routine practice, rather
than idealized research conditions. To
our knowledge, there is presently no
comparable public database. The perfor-
mance of a novel algorithm, including
breakdown conditions or generally unsat-
isfactory performances, can be identified
using this testing database. Furthermore,
direct comparisons of different algo-
rithms using a common testing database
should breed healthy competition, and
promote clear, iterative improvements.
Finally, credible evaluation using a stan-
dard database may encourage adoption of

innovative methods by caregivers, partic-
ularly when some methods are propri-
etary and not fully disclosed to the public.
The usefulness of ancillary algorithms for
CO estimation (e.g., generalized transfer
functions to estimate central aortic pres-
sure, or ABP dampening detectors) can
likewise be tested.

Because this COTD/ABP data set con-
tains “real-world” ICU data, collected
during routine operations, the reference
CO measurements were single COTD de-
terminations. This reflects our ICU’s clin-
ical practice, even though it is an imper-
fect CO reference method (26,27). As for
quality control of the ABP signals, the
ICU protocol calls for rezeroing and the
flush test at least once per shift, although
there was no explicit mechanism for us to
assess protocol compliance. Despite these
limitations, however, this large data set
offers a fair basis for the relative compar-
isons of different CO-from-ABP algo-
rithms. Even if there are random errors
in some of the COTD measurements and
random artifacts in some ABP waveforms,
a superior algorithm should, on average,
prove to be a better predictor of COTD

than an inferior CO-from-ABP algorithm,
given a data set of this size. (Such sources
of error tend to be carefully minimized
during controlled clinical trials, and so
such trials may or may not be applicable
to routine clinical conditions). Arguably,
the fact that these are “real-world” data
(e.g., real-world incidence of improper
transducer zeroing, damping, etc.) en-
hances the validity of such relative com-
parisons, since these measurements re-
flect the actual conditions under which
any useful algorithm must operate. On
the other hand, this data set is problem-
atic for evaluating the absolute accuracy
of a given algorithm; the use of single
COTD measurement, an imperfect refer-
ence method, will widen the overall lim-
its-of-agreement, because the investiga-
tional algorithm and the CO reference
will differ due to error in both the CO
algorithm and in COTD.

If and when future investigators col-
lect additional data sets (perhaps using
alternative CO reference methods as in
(28), or ABP measured from other ana-
tomical locations such as the femoral
artery), these data sets can also be
freely posted on PhysioNet for public
access, permitting further standardized
comparisons of different CO estimators.
We suggest that it is beneficial to make
available the largest volume of data for
the widest range of populations and

Figure 4. Example of continuous cardiac output (CO)-from-arterial blood pressure (ABP) estimated by
the Liljestrand algorithm (gray line) versus episodic thermodilution CO measurements (stem plots)
for a subject over a 50-hr time interval, using a single calibration factor (C1, see text for details). Pulse
pressure (PP), mean arterial pressure (MAP) and heart rate (HR) through this same temporal window,
as computed by our algorithm, are also shown (gray lines) with stem plots illustrating their values
each time CO thermadilution (COTD) was measured. C1 calibration minimizes the root-mean-square
of the difference of each pairing of COTD and the corresponding CO-from-ABP estimations. C2
calibration uses the first pairing of the CO-from-ABP estimate and COTD only. For each investigational
algorithm, the distribution of errors versus COTD was compared with the distribution of errors of
‘calibrated MAP’ using the Kolmogorov-Smirnov test. *Significantly different from calibrated MAP
(p 	 0.001) per McNemar’s test. #When using the alternative “lowest nonnegative slope” method to
estimate the systolic interval, the lower/upper limits are �1.94/�1.54 L/min. Results in Table 3
employ 0.3 ��beat_period to estimate systolic interval. ##When using the alternative “lowest nonnega-
tive slope” method to estimate the systolic interval, the lower/upper limits are �2.40/�1.97 L/min.
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physiologic states, rather than ideal-
ized, smaller data sets.

Investigational Algorithms. We report
results from eight CO-from-ABP algo-
rithms, many of which were originally
intended for use with a central ABP wave-
form. One finding in this trial was the
superiority of the CO-from-ABP algo-
rithm described in 1928 by Liljestrand
and Zander, which is a modestly but sig-
nificantly superior estimator of COTD

than MAP alone (95% limits-of-agree-
ment with COTD are 0.85 L/min smaller).
To the extent that COTD is a useful pa-
rameter to monitor, the Liljestrand algo-
rithm may enhance standard vital signs.
Also, compared with MAP, the Liljestrand
method offers additional (although im-
perfect) directional information about
major changes in COTD, 78% versus 56%,
respectively. Many of the other algo-
rithms offered very similar directional
agreement with COTD, although failed to
track COTD changes quantitatively (rela-
tive to MAP). We speculate that one rea-
son why the algorithms do not exceed
79% agreement with these major
changes in COTD is because of noisy or
artifactual measurements in either ABP
or COTD, which skew these results. The
former might be addressed in the future
with improved preprocessing of the ABP
waveform. One exemplary case of CO es-
timated continuously by the Liljestrand
algorithm versus COTD measured episod-
ically is illustrated in Figure 4.

The performance of the Liljestrand
method is notable because the ABP data
were collected during routine ICU clinical
operations, during which some degree of
motion artifact, catheter damping, improp-
erly calibrated transducers, etc. are inevita-
ble. We employed lenient ABP quality cri-
teria (analyzing all data with �40%
abnormal ABP pulses), which only excluded
13.7% of the noisiest minute-long ABP
waveform segments. We found that the
95% limits-of-agreement between the
Liljestrand CO estimates and COTD are a
function of ABP waveform quality: as the
ABP quality criteria are made increasingly
stringent, the limits-of-agreement grow
tighter, although more data are excluded.
Note that we did not explicitly exclude
dampened ABP waveforms, aside from re-
quiring that the pulse pressure was �20
mm Hg. Waveform damping (due to air
bubbles, thrombus, partial lumen occlu-
sion, etc.) can subtly reduce the measured
pulse pressure and so is a potentially seri-
ous source of error for the Liljestrand algo-
rithm, which contains pulse pressure in its

numerator). If an automated algorithm
were able to detect or exclude slightly
dampened ABP waveforms, or if the clinical
staff took special care to avoid dampened
intra-arterial measurements, it is likely that
the Liljestrand method, or indeed any of
the investigational methods in Table 1,
would prove even more accurate.

Presently, the best known CO-from-
ABP algorithms are the commercially-
available methods, such as PiCCO, Mod-
elflow, and LiDCO Plus PulseCO (4–6),
which are procedurally more complex
than the simple formulas in Table 1. We
attempted to implement algorithms
based on limited published descriptions
of the commercial systems. We examined
the pulse power (r.m.s.), which is report-
edly one component of the LiDCO Plus
PulseCO method (4); the results are pro-
vided in Table 3. In addition, we devel-
oped operational algorithms that were
consistent with certain published details
of the Modelflow and PiCCO methods. To
test the Modelflow method, we developed
a nonlinear three element model consis-
tent with (6). To test the PiCCO method,
we implemented an algorithm that uses
mathematical formulas reported in (29),
to estimate arterial compliance as a non-
linear function of ABP and a calibration
factor, and subsequently, to estimate CO
as a function of ABP and arterial compli-
ance. The references described certain
details about the methods, but not nu-
merous additional details that are neces-
sary for functional signal processing soft-
ware. Because these commercial methods
are not “open source” we had to rely
extensively on our own software engi-
neering judgments to produce functional
data processing software, consistent with
what we thought the commercial prod-
ucts might do. The performance of our
algorithms, however, was not signifi-
cantly better than calibrated MAP in
terms of both 95% limits-of-agreement,
and frequency of directional agreement
with COTD for major changes in COTD. We
therefore chose to exclude these algo-
rithms from our study, in case they
might be misconstrued as relating to the
actual commercial algorithms, rather
than our own unsuccessful software de-
velopment efforts. Our software imple-
mentations are available for review on the
Physionet website. We conclude that it is
very difficult to satisfactorily implement
proprietary methods and independently
evaluate their capabilities.

Ideally, vendors would make the
source code for their methods available

for public inspection, to bring unreliable
methods to light and accelerate accep-
tance of rigorous algorithms. However,
this is simply not standard practice for
commercial biomedical algorithms. Be-
cause most commercial algorithms will
remain proverbial “black-boxes” to the
user community, and because it is chal-
lenging to evaluate these algorithms in-
dependently, publicly and freely available
testing databases are all the more essen-
tial. Indeed, testing proprietary ECG ar-
rhythmia detection algorithms using
standard testing databases is a mandatory
step in obtaining United States Food and
Drug Administration approval (15). The
clinical community might want to de-
mand similar comparative evaluation of
other types of diagnostic algorithms,
such as CO-from-ABP algorithms, before
relying on these methods for patient care.
The MIMIC II COTD/ABP data set is now
publicly and freely available as a first step
toward providing such a database. We in-
vite developers and vendors of CO-from-
ABP algorithms to test their methods and
report their performance on the MIMIC II
COTD/ABP data set. Our best performing
algorithm, the Liljestrand method, may
be a useful basis for comparison.

The modest performance of most of
the investigational algorithms requires
discussion. As noted in the Introduction,
it is a theoretical challenge to rigorously
estimate global blood flow from a periph-
eral pressure measurement, because of
arterial compliance changes, superposi-
tion of antegrade and retrograde pressure
waves, and other factors. In this investi-
gation, furthermore, additional factors
may have contributed to the poor perfor-
mances, including: use of real-world ABP
waveform data rather than pristine re-
search data (discussed above); use of ra-
dial ABP waveforms rather than central
ABP waveforms; one-time calibration
rather than repeated recalibration; and
inclusion of all subjects regardless of car-
diac valve function.

Most of the investigational algorithms
were originally intended for use with a
central ABP waveform, where the systolic
interval of the ABP may have relatively
fewer retrograde components (i.e., re-
flected waves). The PiCCO method has
been applied primarily to femoral ABP
(e.g., 5). Yet measurement of a radial ABP
is a common clinical practice, and algo-
rithms which perform suitably using a
radial ABP may prove more valuable be-
cause radial ABP is more often available,
and because noninvasive devices exist to
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measure distal extremity ABP. Therefore
we feel that investigation of these algo-
rithms applied to a radial ABP is war-
ranted. There is precedent for applying an
algorithm intended for a central ABP on a
peripheral BP (6,28). Indeed, we discov-
ered that the Liljestrand method per-
forms well when applied to radial ABP.

Many pulse contour methods pre-
scribe recalibration after each new ref-
erence CO measurement, although we
did not use this methodology in our
investigation. More frequent calibra-
tions will certainly improve accuracy,
not only because this accounts for dy-
namic changes in arterial compliance,
but because each COTD is, on average, a
good predictor of the subsequent COTD.
Yet this does not reveal the key ques-
tion: when the patient’s cardiovascular
state is changing but COTD is un-
known—and this is precisely when con-
tinuous CO-from-ABP could prove use-
ful— how accurate is the algorithm?
Taking a new measurement of COTD (for
recalibration) defeats the need for CO
to be independently estimated via wave-
form analysis. Thus, in this study, we
compared how well each algorithm can
estimate CO using just a single calibra-
tion factor. The calibration methods in
this study included C1, the “best possi-
ble calibration” (a retrospective con-
struct, in which one optimal calibration
factor that minimizes the overall esti-
mation error is employed); and C2, in
which only the first pairing of CO-from-
ABP and COTD are employed for calibra-
tion, and subsequent pairings are exam-
ined for accuracy. Presumably, real-
world performances (making some use
of recalibration) will lie somewhere be-
tween the ideal of the C1 calibration
method and the imprecision of the C2
method.

We did not exclude subjects based on
heart valve function. Rather, we trusted
that the ICU staff would only measure
COTD in appropriate patients (e.g., with-
out significant tricuspid regurgitation),
and that the ideal CO-from-ABP algo-
rithm would tolerate some aortic valve
dysfunction. When we studied the subset
of cases with documented normal tricus-
pid and aortic valve function, we did not
find improvement in any of the algo-
rithms’ performances. Echocardiograms
were available in 56 subjects, and normal
cardiac valve function was found in 64%
of them (36 subjects). For all eight inves-
tigational algorithms, the 95% limits-of-
agreement with COTD were no better in

this subset of 36 subjects with docu-
mented normal valve function.

CONCLUSION

All of the investigational algorithms
were superior to MAP as directional,
qualitative indicators of major changes in
COTD. However, only the Liljestrand
method was superior to calibrated MAP as
a quantitative predictor of CO (which is
essential for meaningful interpretation of
directional changes). The Liljestrand pre-
dictor may be a useful parameter for intel-
ligent monitoring algorithms when a pa-
tient’s radial ABP is measured, providing
more information than MAP alone. In this
study, we developed complex algorithms
that incorporated publicly-disclosed details
of two commercial CO-from-ABP methods
but their performances were unsatisfactory
and we excluded these methods from study.
We conclude that it is very difficult to sat-
isfactorily implement proprietary methods
and independently evaluate their capabili-
ties. Since our testing data set is publicly
and freely available, investigators and
vendors of CO-from-ABP algorithms are
invited to test their methods using these
data, offering a fair basis for comparison
of different CO-from-ABP algorithms un-
der real-world clinical conditions. The
clinical community might expect vendors
to publically report how well their algo-
rithms perform in public testing data-
bases before relying on the algorithms for
patient care, and the MIMIC II COTD/ABP
data set is a first step toward such a
public resource.
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