
An Open-Source, Interactive Java-Based System for Rapid Encoding of
Significant Events in the ICU Using the Unified Medical Language System

J Shu
�

, GD Clifford
�

, WJ Long
�

, GB Moody
�

, P Szolovits
�

, RG Mark
�

�

Harvard-MIT Division of Health Sciences & Technology, Cambridge MA, USA
�

Computer Science and Artificial Intelligence Laboratory, Cambridge MA, USA

Abstract

The MIMIC II project, previously described at Computers
in Cardiology, is creating a massive annotated collection
of recorded cardiovascular and related signals and
accompanying clinical data from intensive care units
(ICUs), to support research aimed at improving critical
care monitoring. Annotating this database requires
describing its significant clinical events using standardized
terminology. We present an interactive Java-based
application that encodes events by retrieving the clinical
concepts that most closely match a free-text input phrase.
We chose to code the events using a subset of the National
Library of Medicine’s Unified Medical Language System
(UMLS), a standard, freely available collection of medical
vocabularies for identifying diseases, symptoms, and other
clinical concepts. Some common difficulties that occur
in the process of coding are spelling errors, abbreviation
ambiguities, and combinations of events for which there
is no UMLS code. Among the features our system has to
deal with these issues are an integrated spell-checker and a
personalized dictionary allowing each user of the system
to keep a unique list of frequently used abbreviations.
Additionally, utilizing the UMLS concept hierarchy and
using ”fuzzy” string matching both help to find the UMLS
concepts that most closely match the free text description.
We ran an unsupervised, non-interactive batch test of the
program with the UMLS stored in a MySQL database on
a 3GHz Pentium 4 PC. We used as input a list of almost
200 distinct medical phrases (a total of 453 words, or 2.3
words/phrase) that were manually extracted from a sample
of hospital discharge summaries and then reviewed by a
clinician. The program successfully coded approximately
85% of the terms, as judged by two clinicians, and it took
an average of 2.56 seconds to complete each query. We
present methods for reducing the bottlenecks and improving
the completeness and accuracy of the coding, including
subject-specific abbreviation dictionaries. Although our
application is written to support the MIMIC II project,
similar applications will be important components of future
real-time medical decision support systems. The use of
a flexible API and freely available dictionaries facilitates
open source distribution and integration.

1. Introduction

The Laboratory for Computational Physiology at MIT
is currently developing a large, comprehensive multi-
parameter database of patient signals and clinical data
(MIMIC II) [1, 2] in order to support research in intelligent
patient monitoring. The MIMIC II database includes
physiologic signals, laboratory tests, nursing flow charts,
clinical progress notes, and other data collected from
patients in the intensive care units of a local hospital.
Expert clinicians are reviewing each case and annotating
clinically significant events, which include, but are not
limited to, diseases (e.g., gastrointestinal bleed, septic
shock, hemorrhage), symptoms (e.g., chest pain, nausea),
significant medication changes, vital sign changes (e.g.,
tachycardia, hypotension), waveform abnormalities (e.g.,
arrhythmias, ST elevation), and abnormal laboratory values.
The annotations will be used to train and test future
algorithms that automatically detect significant clinical
events, given a patient’s recorded data. Thus, to make the
annotations useful for machine analysis, each annotation
must be labelled with a machine-readable, or standardized,
code.

Assigning such a code to a clinical event involves
automatically translating a free-text description of the
event (provided by the annotator) into one or more
codes from a medical vocabulary. Each unique clinical
concept is assigned a concept code (a unique alpha-numeric
identifier), and the concept generally has several different
synonyms. For example, heart attack and myocardial
infarction represent the same concept, and both strings are
mapped to the same concept code.

The database of medical terminology, or codes, chosen
for this task is a subset of the 2004AA version of the
National Library of Medicine’s Unified Medical Language
System (UMLS) [3], a collection of over 100 source
vocabularies available (usually freely) from the National
Library of Medicine. This subset is effectively equivalent
to SNOMED-CT [4], a hierarchical medical nomenclature
formed by merging the College of American Pathologists’
Systematized Nomenclature of Medicine (SNOMED) with
the UK National Health Service’s Read Clinical Terms
(CT). SNOMED-CT contains a collection of concepts,



descriptions, and relationships and is rapidly becoming
an international standard for coding medical concepts.
Each concept in the vocabulary represents a clinical
concept, such as a disease, symptom, intervention, or body
part. Each concept can be described by one or more
terms (synonyms). In addition, there are many types of
relationships that link the different concepts, including
hierarchical (is-a) relationships and attribute relationships
(such as a body part being linked to a disease through the
finding site relationship). The UMLS captures all of the
information contained in SNOMED-CT, but is stored within
a different database structure.

There are several challenges to translating free-text
phrases into standardized terminology. The search for
concept codes must be accurate and rapid enough that
annotators do not lose patience. Annotators also tend to
make spelling mistakes and use abbreviations that have
more than one meaning. The same concept may be
described in various different ways, and annotators might
wish to code a concept that simply does not exist in the
UMLS. Sometimes the annotator might not be satisfied with
the level of specificity of codes returned and may want to
look at related concepts. This article addresses these issues
and compares the accuracy and search times for a variety of
medical phrases.

2. Methods

The interface for assessing search performance is an
interactive, Java-based application that searches for UMLS
concepts that encode a free-text medical phrase. The
system’s features include an open-source spell-checker and
a personalized abbreviation dictionary, along with a large
list of commonly used medical abbreviations.

2.1. Special Features

This section describes some of the special features that
have been incorporated into the coding algorithm.

2.1.1 Common Abbreviations

The UMLS contains a table of abbreviations and
acronyms and their expansions [5], but the table is not
adequate for a clinical event coding algorithm because
it contains many irrelevant (non-medical) abbreviations,
yet lacks many abbreviations that an annotator might use.
Therefore, an open source list of medical abbreviations and
acronyms [6] is used instead. The list simply contains a
textual list of abbreviations and their expansions.

2.1.2 Personal Abbreviations

When reviewing a patient’s medical record, annotators
will probably wish to code the same clinical concept

multiple times. Thus, they have the option at any time
to link a term or abbreviation directly to one or more
UMLS concept codes, which are saved in a MySQL
[7] table and available in later lookups. For example,
the annotator can add the abbreviation mi, linked to the
concept code C0027051, the identifier for myocardial
infarction. On a subsequent attempt to code mi, myocardial
infarction is guaranteed to be one of the concepts returned.
This feature also addresses the fact that the open source
common abbreviation list sometimes does not contain
desired abbreviations.

2.1.3 Spell Checker

Annotators, and clinicians in general, tend to make
spelling errors due to being rushed or not knowing the
spelling of a complex medical term. An open source
spell checker [8] is therefore incorporated into the coding
process. The dictionary word list used with the spell
checker consists of a standard spelling dictionary [9],
augmented with the words from the UMLS normalized
word table, which contains medical terms that are not in
the standard dictionary. Additionally, the words from the
common and personal abbreviation lists are added to the
dictionary so that they are not mistaken for misspelled
words.

Figure 1. A flow chart of the search process, where N is the
number of UMLS codes found by the algorithm.

2.2. Search Procedure

The input to the coding algorithm is a free-text phrase
highlighted or typed by the annotator. The phrase is run
through a spell checker before a series of resources is
consulted to find a concept code matching the phrase. First,
the user’s personalized abbreviation dictionary is checked,
and if it contains a mapping for the input phrase, then
those concepts are added to the preliminary results. The



results of a concept name lookup in the UMLS concepts
table is also added to the results, so that the search is
not always limited to the personal abbreviation list. From
this point on, the algorithm continues searching only if no
potential codes have been found thus far, ensuring that the
user receives codes back as rapidly as possible. The next
step is to check the common abbreviation list to see if the
input phrase is an abbreviation. If still nothing is found,
the algorithm then tries to match the input phrase against
the UMLS normalized string table, which consists of all
UMLS concepts in normalized form, i.e., with common
words such as the, and, and of removed and the remaining
words alphabetized. Finally, if there are still no concepts
found, the algorithm breaks the input up into the largest
subsets of words that it can code, and codes each subset
separately. At any point, when potential concepts are
displayed, the user has the option of searching for related,
broader, or narrower terms; these relationships correspond
to the is-a relationship hierarchy in the UMLS and are
helpful for finding a more or less specific concept than the
one presented. See Figure 1 for a flow diagram of the search
algorithm. N represents the number of concepts found after
each part of the algorithm.

2.3. Algorithm Testing Method

The initial test of the coding algorithm consisted of
running a non-interactive batch test of 194 medical phrases
and having two clinicians adjudicate the results. This
first test coded 85% of the phrases accurately, taking
an average of 2.56 seconds to code each phrase. As
a further test of the speed and accuracy of the coding
algorithm, a fully interactive version of the software
was used by three clinicians to code over 1400 medical
phrases. The phrases were taken from a corpus of nursing
admission and progress notes from a local hospital’s ICU.
Specifically, the focus was narrowed to three types of
clincal information (medications, diseases, and signs or
symptoms) to realistically simulate a subset of phrases
that would be coded in an annotation situation. Three
clinicians were asked to pick out all such phrases from
the nursing notes and invoke the UMLS coding software
to code each phrase. The SNOMED-CT subset of the
UMLS database was stored in MySQL (MyISAM) tables
on a 3GHz Pentium 4 PC. The clinicians each began with
an empty list of personal abbreviations (also stored in a
MySQL database), which they could add to as necessary.
For each phrase, the clinicians were asked to choose the
correct resulting UMLS code(s) (if any) and judge whether
the results: 1) captured the full meaning of the phrase, 2)
were codeable but did not capture the concept exactly, or 3)
were simply wrong. To identify bottlenecks, the time to run
each type of search (shown in Figure 1) was also logged.

Table 1. Testing Results, including coding success rate,
average length of phrases, personal abbreviations added,
and misspellings corrected.

Type Medication Disease Sign/
Symptom

Total Phrases 597 261 619
% Success 96.6% 92.3% 76.9%
Avg. Words/Phrase 1.1 1.7 2.0
New Abbreviations 64 23 21
Misspellings 33 19 52

3. Results

The clinicians reviewed a total of 302 nursing notes
and found a total of 1477 phrases (597 medications, 261
diseases, and 619 signs or symptoms). The clinician-
judged accuracy results show that 90-95% of medications
and diseases were coded successfully (i.e., captured the full
meaning of the phrase), whereas only 77% of signs and
symptoms were coded successfully. Several misspellings
were corrected for all three phrase types. Medications
were most frequently added as personal abbreviations,
because many drug trade names could not be found in
the SNOMED-CT subset of the UMLS and were coded
with their generic drug names instead. These results are
summarized in Table 1.

Timing results were recorded for the five types of
searches shown in Figure 1 (i.e., personal abbreviation,
concept name, common abbreviation, normalized string,
and partial phrase). All personal abbreviation searches
took less than 1ms to complete. 75% of concept name
searches took less than 4ms, and all took less than 60ms.
95% of common abbreviation searches took less than 5ms,
but some phrases took several seconds to complete, most
likely due to abbreviations that expanded into phrases with
multiple words. Almost all (92%) of the normalized string
searches took between 1.35s and 1.75s, while partial phrase
searches often took several seconds to complete, depending
on the number of words in the input phrase. The largest
bottlenecks occurred when exact phrases could not be found
and wild-card characters had to be used in the MySQL
searches.

4. Discussion

The spell checking and personal abbreviation features
were shown to have a positive impact on the coding of
medications, diseases, and signs and symptoms. Both the
probability of the user finding the correct code on the first
try and the amount of time it took to code an abbreviated
phrase improved dramatically as new abbreviations were



added to the personal dictionaries. The spell checker
successfully helped to correct spelling mistakes in many
instances.

A possible explanation for signs and symptoms being
more difficult to code than medications and diseases is that
signs and symptoms are often subjective descriptions of a
patient’s state and thus have a complex structure, whereas
diseases and medications are more well-defined. However,
many specific drug names could not be found in SNOMED-
CT, and instead had to be coded by searching for the generic
drug name. This extra step increased the time required to
code many medications initially, but once they were added
to the personal abbreviation list, the time to code these
medications was negligible.

Most parts of the search algorithm were performed
quickly because the lookup tables (for common and
personal abbreviations) were small enough to read into
memory and because the MySQL tables were indexed. The
slower searches used wild-card characters and thus could
not make use of the MySQL indices. A possible way to
improve some of the search times is to find a different
method to replace MySQL wild-card lookups, or leave this
part out completely, possibly sacrificing completeness for
improved speed.

Further methods to improve the accuracy and speed of
the coding algorithm will be investigated. For example,
adding a vocabulary of drug trade names might make the
coding of medications faster. A method to remove irrelevant
results from searches might be to filter the search space
by semantic category (e.g., by organ systems or diseases).
Another problem to consider is that although searching the
normalized string table often helps to find an approximate
concept match, it does not consider word order and thus
might not capture the actual meaning of the input phrase.
To help preserve semantics, UMLS tools such as part-of-
speech tagging might be utilized.

5. Conclusion

The system presented for coding free-text medical
phrases into UMLS concept codes is shown to code
medications and diseases very accurately, and signs and
symptoms moderately accurately, with times ranging from
under 1ms to several seconds to code a concept. The
interactive features of the system, including personal
abbreviation lists and spell checking, had a positive impact
on the coding process. Personal abbreviations were
used extensively and improved the speed of coding, even
though there was some learning time because the personal
dictionaries were initially empty. Several spelling mistakes
were fixed, leading to successful coding.

The test results will be used to resolve bottlenecks
and improve the efficiency of the search algorithm.

Feedback gathered from the clinicians will be used to
improve the accuracy and usability of the coding software.
Incorporating new medical vocabularies and filtering results
by semantic or syntactic category are methods that might
be explored to filter out irrelevant codes. These techniques
will be helpful in developing an algorithm to automatically
extract and code clinical phrases such as medications,
diseases, symptoms, treatments, and laboratory tests from
nursing progress notes. The Java source code and a coded
corpus of text will be posted on Physionet[10, 11].

Acknowledgments

This publication was made possible by Grant Number R01 EB001659

from the National Institute of Biomedical Imaging and Bioengineering

(NIBIB).

References

[1] Saeed M, Lieu C, Raber G, Mark R. MIMIC II: A Massive
Temporal ICU Patient Database to Support Research in
Intelligent Patient Monitoring. Computers in Cardiology
2002;29:641–644.

[2] Mark RG. Integrating data, models and reasoning in critical
care, 2003. National Institute of Biomedical Imaging and
Bioengineering Proposal R01 EB001659.

[3] National Library of Medicine. UMLS Knowledge Sources,
16th Edition - July Release: 2004AB Documentation, 2004.

[4] College of American Pathologists. SNOMED Clinical
Terms Technical Specification: Revision 23, 2000.

[5] National Library of Medicine. The SPECIALIST
LEXICON: UMLS Documentation, 2004.

[6] Berman JJ. Pathology abbreviations and acronyms, May
2001.

[7] http://www.mysql.com.
[8] SourceForge.net. Jazzy - Java Spell Check API.
[9] ftp://metalab.unc.edu/pub/Linux/libs/linux.words.2.tar.gz.

Standard Linux dictionary on /usr/share/dict. Redhat 9.0,
2003.

[10] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM,
Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK,
Stanley HE. Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex
physiologic signals. Circulations 2000;101(23):e215–e220.

[11] http://www.physionet.org/.

Address for correspondence:

Jennifer Shu
Laboratory for Computational Physiology
Harvard-MIT Division of Health Sciences & Technology
Rm E25-505, 45 Carleton St.,
Cambridge MA 02142 USA
jshu@mit.edu


