
A Statistical Model of the Sleep-Wake Dynamics of the Cardiac Rhythm

PE McSharry1,2, GD Clifford1

1Department of Engineering Science, University of Oxford, Oxford, UK
2Mathematical Institute, University of Oxford, Oxford, UK
3Harvard-MIT Division of Health Sciences & Technology

Cambridge MA 02142, US

Abstract

The beat-to-beat heart rate varies considerably over the
course of 24 hours. The Computers in Cardiology Chal-
lenge of 2002 was based on understanding and modelling
the dynamics of the source of this variation. The diverse
range of entries for simulating the RR tachogram empha-
sises the level of ambiguity that exists when attempting to
model the cardiovascular system over long time scales.
In 2002, a model that combined both deterministic and
stochastic descriptions of the data generating process was
developed to reproduce both short term variations and
long range correlations in RR intervals. In this paper these
ideas are extended and new observations of sleep-wake
transitions observed during sleep are incorporated. The
new model more faithfully represents some of the key em-
pirical characteristics that have been observed in actual
recordings of healthy human subjects from the Physionet
database. These characteristics include the distribution of
RR intervals during wake and sleep periods. In particular
the model emulates the existence of a scale-free power law
distribution during wakefulness and the exponential distri-
bution (with a characteristic time scale) of sleep-wake ac-
tivity during prolonged sleep. Concurrence with real data
is demonstrated using detrended fluctuation analysis and
multiscale entropy. In order to increase the model’s util-
ity for assessing biomedical signal processing methods ap-
plied to the RR interval time series, a label for each beat
is available as either normal, ectopic or artifactual. Fur-
thermore, a state label (wake or sleep) is available.

1. Introduction

The cardiac rhythm fluctuates throughout the day, re-
sponding to different demands on the body and varying
levels of physical and mental activity. The ability of the
heart to adapt to internal and external perturbations may
provide useful information about its state of health. In par-
ticular, the loss of adaptability resulting from ageing or the

onset of disease may in some case be detected from long
recordings of cardiac inter-beat time intervals derived from
the electrocardiogram [1].

Quantifying the self-similarity of such cardiac signals
provides a means of distinguishing between health and dis-
ease and monitoring the effect of ageing [2, 3]. One ap-
proach for measuring the self-similarity of a signal is to
calculate its power-spectral density,S(f), and estimate the
power-law scaling exponent,β, that satisfiesS(f) ∼ f−β .
This exponent,β, may be viewed as a measure of the
roughness of the time series, with smoother self-similar
time series having larger values ofβ. For cardiac signals, a
1/f -like noise (β = 1) is found [4]. This value is midway
between the complete randomness of white noise (β = 0)
and the much smoother Brownian noise (β = 2) [5].

During sleep the human body is less exposed to physical
activity and variations in the heartrate mainly result from
neuronal activity. For this reason, it is advantageous to in-
vestigate the statistical properties of cardiac activity during
sleep and during sleep-wake transitions. The scaling expo-
nents have been found to vary between wake and sleep and
also during different sleep stages [1, 6].

2. Methods

In this section, a method is described for producing real-
istic RR interval tachograms spanning twenty-four hours.
These tachograms incorporate both sleep and wake activ-
ity. A dynamical model is used to govern the switching
between states of sleep and wake [7]. Data simulated from
a white noise process is transformed to produce segments
of RR tachogram with pre-specified temporal and spectral
properties [8].

2.1. Sleep-wake dynamics

Lo et al. [7] analysed the distribution of time durations
spent in periods of sleep and wake for 39 full-night sleep
records of 20 healthy subjects. These included 11 females



and 9 males aged between 23 and 57 with an average sleep
duration of 7.0 hours. The cumulative distribution of du-
rations, given byP (t) =

∫∞
t

p(t′)dt′, was employed to
demonstrate the difference between periods of sleep and
wake. The periods of time spent in a wake state followed a
power-law distribution,

P (t) ∼ t−α (1)

where, for the twenty subjects,α had a mean value of1.3
and a standard deviation of0.4. In contrast, the periods of
time spent in a sleep state greater than 5 minutes followed
an exponential distribution,

P (t) ∼ exp(−t/τ), (2)

with a characteristic time scaleτ . For the twenty subjects
investigated,τ had an average of 20 minutes and a standard
deviation of 5 minutes.

A simple model of sleep-wake dynamics uses a latent
variable,x(t), to define wake states whenx is positive and
sleep states whenx is negative and satisfies−∆ ≤ x ≤ 0.
The latent variablex(t) is assumed to follow a random
walk, which corresponds to the noisy behaviour generated
by interactions between competing sleep-active and wake-
promoting neurons. To ensure a bias towards sleep, oncex
moves into the wake state, there is a restoring force to at-
tract it back to the sleep state. The sleep-wake transitions
during nocturnal sleep usually demonstrate two features:
(i) during short wake periods there is a strong probability
of falling asleep and (ii) as the period of wake state is pro-
longed, the probability of falling asleep is reduced. The
model imposes a restoring force that weakens asx moves
away from the critical transition value ofx = 0. These
observations about nocturnal sleep may be represented by
a random walk in a logarithmic potential,V (x) = b lnx,
with an associated forcef(x) = −dV (x)/dx = −b/x,
where the biasb gives the magnitude of the restoring force.
The model may be written asx(t+1) = x(t)+ δx(t) with

δx(t) =
{

ε(t), if −∆ ≤ x(t) ≤ 0 (sleep),
− b

x + ε(t), if x(t) > 0 (wake),
(3)

whereε(t) is an uncorrelated normally distributed random
variable with zero mean and unit standard deviation. As
the distribution of durations spent in the wake state follow
the return times of a random walk in a logarithmic poten-
tial and therefore provide a power-law distribution for large
times with cumulative distribution given byα = 1/2 + b.
In contrast, the distribution of periods spent in the sleep
state is the same as that of return times of a random walk
in a space with a reflecting boundary. For large times, the
cumulative distribution is exponential with characteristic
time τ satisfyingτ ∼ ∆2.

The model parameters,b and∆ may change during the
night to reflect the circadian rhythm. Bothb and∆, were

Figure 1. Cumulative distribution functions arising from
the dynamics of the sleep-wake model for time duration
spent in (a) the wake state (log-log) and (b) the sleep
state (log-linear), showing power-law and exponential be-
haviour respectively.

varied to reproduce the recorded signals and the best es-
timates suggested that∆ decreases from7.9 ± 0.2 in the
first hours of sleep to∆ = 5.5 ± 0.2 for the final hours
of sleep. The biasb was found to remain approximately
constant during the night withb = 0.8± 0.1 [7].

2.2. Sleep-wake scaling

The self-similar structure of cardiac interbeat intervals
gives rise to an approximate1/f spectrum, also known as
pink noise [4]. In the biomedical literature, this scaling
is often quantified using a technique known as detrended
fluctuation analysis (DFA) [3]. For a review and compar-
ison of techniques, see [9]. Results from investigations of
scaling of during both sleep and wake periods are used to
specify suitable scaling coefficients [1]. These results, cal-
culated from 18 healthy subjects (13 females and 5 males
with ages between 22 and 71) in the Physionet Normal Si-
nus Rhythm database [10] gave an averageβ of 1.10, stan-



dard deviation of0.14, for wake and an averageβ of 0.70,
standard deviation of0.20, for sleep.

2.3. Simulation

A realisation of a noise process with a particular scaling
exponent,β, may be obtained by (i) computing the discrete
Fourier transform (DFT) of a normally distributed white
noise withN points, (ii) filtering the resulting Fourier co-
efficients,Xk, usingX ′

k = (k/N)−β/2Xk, and (iii) taking
the inverse DFT of the filtered Fourier coefficients,X ′

k.
The new time series were transformed to have means of
µs andµw during sleep and wake whereµs is normally
distributed with mean 1.0 and standard deviation 0.1 and
µw/µs is uniformly distributed on[0.75, 0.85]. The stan-
dard deviations were taken as 5% of the mean values.

3. Comparing real and artificial data

Apart from visual inspection and the reproduction of the
dynamics of sleep-wake distribution times, it is also im-
portant to evaluate how well the model reproduces empir-
ical heart rate variability statistics. Two common statistics
which describe the variability of the RR interval time series
over a range of scales areDetrended Fluctuation Analysis
(DFA) [11], andMulti-scale Entropy(MSE) [12].

As a representative sample of real RR interval dynamics,
we chose the normal sinus rhythm RR interval database
[10] which consists of 54 long-term ECG recordings of
subjects in normal sinus rhythm (30 men, aged 28.5 to 76,
and 24 women, aged 58 to 73). Artificial data was gener-
ated using 100 random seeds of the described model, each
approximately 24 hours in length. Only the sleep periods
of both the real and artificial RR intervals were employed
in order to analyse the sleep-wake dynamics.

Figure 3 presents a comparison of the DFA scaling for
real and model-generated RR intervals. Note that the
model-based RR interval time series has a DFA scaling of
α = 1.05 with a standard deviation of 0.05 over the 100
realisations. The real data exhibits a similar DFA scaling
of α = 1.00 with a standard deviation of 0.06 over the
54 records. Note that the real data tends to display more
variance at small values ofn. This may reflect that the
model does not produce enough inter-subject differences
for small values ofn. Both real and artificial populations
provide results that are similar to the value ofα = 1 re-
ported in the literature [11].

Figure 4 presents the results for MSE analysis, show-
ing the average sample entropy for both real and artificial
data sets. The scale factor gives the number of points av-
eraged to form each element of the coarse-grained time se-
ries. Note that both populations have approximately sim-
ilar values and variances at high scale factors, where any
variability over short time scales has been averaged out by

Figure 2. Sleep-wake tachogram simulation showing: (a)
first 6 hours, (b) first hour and (c) first 5 minutes. The
shaded/white regions indicate state of sleep/wake respec-
tively.

the coarse-graining. In contrast, the sample entropy is un-
derestimated by the artificial RR intervals at the low scale
factors. Note that the scale factor of one corresponds to
the standard measures of entropy calculated using the raw
time series. The level of inter-subject variability is similar
for both populations over all scale factors.

The high values of sample entropy at low scale factors
for the artificial RR intervals may reflect a lack of structure
caused by changes in sympathovagal activity and details
of different sleep stages. In addition, the model presented
here does not incorporate circadian variability.

4. Conclusion

A realistic RR interval generator has been described
which preserves both the temporal and spectral properties
of RR intervals during periods of sleep and wakefulness.
The sleep-wake dynamics were encoded using a binary de-
scription of sleep and wake periods. A method of filtering
the Fourier coefficients was used to simulate data with spe-



Figure 3. Comparison of mean DFA scaling for 100 ar-
tificial and 54 real RR tachograms. Error bars show one
standard deviation at each scale.

Figure 4. Comparison of mean sample entropy for 100
artificial and 54 real RR tachograms. Error bars show one
standard deviation at each scale.

cific scaling properties that reflected the values observed
in real RR intervals. The mean, variance and length of
each segment mimics empirically observed distributions,
including the significant differences observed between pe-
riods of sleep and periods of wakefulness. The model’s
output therefore includes both RR intervals and a binary
level of consciousness.

The increasing convergence of the fields of cardiovas-
cular and sleep medicine means that such a model may
help researchers develop more robust signal processing al-
gorithms to identify cardiovascular problems both within
sleep and during wakefulness.

Further developments of the model could include the in-
troduction of RSA and Mayer waves (see [13]) and sleep
staging such that the parasympathetic balance (as observed

in the LF/HF ratio) varies through sleep stage changes in a
manner consistent with physiology.
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