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Editor's Summary

 
 
 

measurement.
real-time estimation of ICP could spare patients the pain of and recovery from more invasive methods of 
immediately upon examining a patient. Such a model-based approach will find use in many clinical situations where
it does not require calibration or training before application. This feature makes it amenable to use in the clinic, 

is that−−other than its ability to estimate ICP noninvasively−−et al.The beauty of the model described by Kashif 

waveforms, correctly identifying elevated ICP (>20 mmHg) with high sensitivity and specificity.
authors' model to estimate ICP. These estimated values were compared to the patient's actual invasive ICP
(taken from the radial artery) and CBF velocity (from transcranial ultrasound), which were then plugged into the 
and brain tissue as the capacitor. Hospital records of 37 patients with traumatic brain injury contained data for ABP
as the respective voltage and current, the cerebral vasculature as the resistor, and the compliance of the vasculature 
(CBF), and ICP. Using an electrical circuit as an analog, Kashif and colleagues were able to describe ABP and CBF
cerebrospinal fluid. The variables involved in this model included arterial blood pressure (ABP), cerebral blood flow 

The authors created a simplified model of what's inside our heads: brain tissue, blood vessels, and

estimating the pressure using tools already available in the clinic.
 have developed a noninvasive method ofet al.ICP monitoring available to a larger patient population, Kashif 

are avoided in routine assessment of other neuropathologies that could benefit from knowing this vital sign. To make 
is important for patients with severe neurological trauma, but because the process is so invasive, ICP measurements
inserted through a hole in the skull, directly into the brain or surrounding space. Monitoring intracranial pressure (ICP) 

Measuring the pressure inside your head is no trivial task. It currently requires an invasive probe or catheter,
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R E S EARCH ART I C L E
COMPUTAT IONAL NEUROLOGY
Model-Based Noninvasive Estimation of Intracranial
Pressure from Cerebral Blood Flow Velocity
and Arterial Pressure
Faisal M. Kashif,1 George C. Verghese,1 Vera Novak,2 Marek Czosnyka,3,4 Thomas Heldt1*
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Intracranial pressure (ICP) is affected in many neurological conditions. Clinical measurement of pressure on the brain
currently requires placing a probe in the cerebrospinal fluid compartment, the brain tissue, or other intracranial
space. This invasiveness limits the measurement to critically ill patients. Because ICP is also clinically important in
conditions ranging from brain tumors and hydrocephalus to concussions, noninvasive determination of ICP would
be desirable. Our model-based approach to continuous estimation and tracking of ICP uses routinely obtainable time-
synchronized, noninvasive (or minimally invasive) measurements of peripheral arterial blood pressure and blood flow
velocity in the middle cerebral artery (MCA), both at intra-heartbeat resolution. A physiological model of cerebro-
vascular dynamics provides mathematical constraints that relate the measured waveforms to ICP. Our algorithm
produces patient-specific ICP estimates with no calibration or training. Using 35 hours of data from 37 patients with
traumatic brain injury, we generated ICP estimates on 2665 nonoverlapping 60-beat data windows. Referenced
against concurrently recorded invasive parenchymal ICP that varied over 100 millimeters of mercury (mmHg) across
all records, our estimates achieved a mean error (bias) of 1.6 mmHg and SD of error (SDE) of 7.6 mmHg. For the 1673
data windows over 22 hours in which blood flow velocity recordings were available from both the left and the right
MCA, averaging the resulting bilateral ICP estimates reduced the bias to 1.5 mmHg and SDE to 5.9 mmHg. This
accuracy is already comparable to that of some invasive ICP measurement methods in current clinical use.
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INTRODUCTION

Intracranial pressure (ICP) is the hydrostatic pressure of the cerebro-
spinal fluid (CSF) that surrounds the neural tissue and cerebral vas-
culature in the cranial cavity. Mean ICP for adults in the supine
posture is normally 5 to 15 mmHg (1). However, ICP can rise mark-
edly in a variety of space-occupying intracranial pathologies, such as
cerebral edema, intracranial hemorrhage, brain tumor, or acute hy-
drocephalus. The flow of oxygenated blood to the brain is driven
by cerebral perfusion pressure (CPP), which is the difference between
mean arterial pressure and ICP. An increase in ICP accordingly
causes a decrease in cerebral blood flow (CBF) when compensatory
mechanisms of cerebral autoregulation fail. Given the brain’s sensitiv-
ity to even short disruptions in oxygen supply, it is not surprising that
elevated ICP correlates with worsening of symptoms in patients with
cerebrovascular injury and can lead to serious consequences, includ-
ing brain ischemia, neural damage, and brain death (2–4). Medical
guidelines for traumatic brain injury (TBI), for example, require main-
taining ICP below 20 to 25 mmHg and CPP above 60 to 70 mmHg
(4–6).

The standard methods currently used for clinical monitoring of
ICP to the desired tolerances are all invasive, requiring a hole to be
drilled in the skull to advance a pressure probe or catheter into the
brain parenchyma, or through the brain tissue into the ventricular
space. With some sacrifice in measurement accuracy, ICP can also
be monitored in the subarachnoid or subdural spaces, without
entering the brain tissue, although still entailing penetration of the
1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. 2Division of Gerontology, Beth Israel Deaconess Medical Center, Boston,
MA 02215, USA. 3Department of Clinical Neurosciences, Addenbrooke’s Hospital, Uni-
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University of Technology, 00-665 Warsaw, Poland.
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skull. All these approaches thus require neurosurgical expertise and
carry the risk of infection and tissue damage. Assessment of spinal
fluid pressure by lumbar puncture can also provide a spot estimate
of ICP; however, this is not recommended when ICP is suspected to
be high because of the risk of brain herniation. Furthermore, a spot
assessment cannot capture dynamic trends in ICP, which can by
themselves be indicators of pathology.

The invasive nature of ICP measurement methods in current clin-
ical practice has prevented more extensive availability of this neuro-
logical vital sign. Monitoring of ICP is mandated in patients with
severe TBI and certain other serious conditions. However, if not
for its invasiveness and risks, ICP measurements could benefit a
much larger patient population because assessment of ICP should
ideally be indicated for diagnosis and monitoring in a wide range
of neuropathologies. Candidate groups include patients with hemor-
rhagic or ischemic stroke, mild or moderate TBI (from sports, falls, or
car accidents), altered mental status or cognitive/psychological disor-
ders, hydrocephalus and implanted shunts, and brain tumors (7–9).
Knowledge of ICP may also aid in establishing differential diagnoses
in more benign conditions in which ICP measurements are not gen-
erally deemed necessary, such as headache, migraine, or visual prob-
lems. The development of a noninvasive ICP (nICP) monitoring system
with clinically acceptable accuracy is therefore warranted.

A variety of modalities has been explored for nICP estimation (10)
through measurement of related physiological variables, for instance,
using ultrasound signals to measure CBF velocity (CBFV) indices
(11), skull vibrations (12), brain tissue resonance (13), or transcranial
time of flight (14); venous ophthalmodynamometry (15); optic nerve
sheath diameter assessment (16); sensing tympanic membrane dis-
placement (17); analyzing otoacoustic emissions (18); magnetic
resonance imaging to estimate incremental intracranial compliance,
and thereby ICP (19); and recordings of visual evoked potentials
nceTranslationalMedicine.org 11 April 2012 Vol 4 Issue 129 129ra44 1
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(20). The approach described by Ragauskas et al. (21) applied external
pressure on the eyeball to balance the flow characteristics in the intra-
and extracranial segments of the ophthalmic artery. The balance con-
dition was then detected by a two-depth transcranial Doppler (TCD)
ultrasound, and the corresponding external pressure was taken as the
estimate of ICP.

Some nICP estimation methods feed simultaneous measurements
of peripheral arterial blood pressure (ABP) along with TCDmeasure-
ments of CBFV into multiparameter mappings to generate the ICP
estimate. Examples are mappings involving nested regressions (22),
neural networks (23), or support-vector machines (24). The recording
of ABP and CBFV waveforms in the clinical setting is quite routine;
ABP measurement is already necessitated in a wide spectrum of crit-
ical care patients, and CBFV is the standard of care in patients with
certain neurovascular pathologies. However, the large number of
parameters and the lack of an underlying mechanistic model mean
that such “black box” mappings can fail to adequately and robustly
capture the relevant physiology.

Almost all the above noninvasive methods require calibration or
tuning of parameters that relate the measured quantities to the ICP
estimates. Such calibration or tuning typically involves the use of ICP
measurements obtained invasively on the patient or from some ref-
erence population. Furthermore, training on a reference population
causes the accuracy of the ICP estimates to depend on how well a par-
ticular patient is represented in the training set. As noted by Popovic
and coauthors (10), after surveying nearly 30 nICP methods patented
over the last 25 years, none of the methods is sufficiently accurate to
allow for routine clinical use. An additional factor in the way of clin-
ical adoption for some of the proposed approaches is the difficulty or
expense (hardware, computation, human resources) of the involved
measurements. None of the previously proposed approaches to nICP
estimation has transitioned from the research setting to accepted clin-
ical practice, although commercial products based on the methods in
(17), (21), and (22) are available.

Here, we present a model-based approach to obtaining estimates
of ICP on a beat-by-beat time scale from noninvasive waveform
measurements of CBFV and ABP. Our approach does not require
patient-specific calibration or training on a reference population.
The associated computational burden is negligible, thereby allowing
near–real-time estimation of ICP.
RESULTS

Dynamic model and
estimation algorithm
Detailed dynamic models of the cerebro-
vascular space (Fig. 1A) have been devel-
oped in the literature (25–27). We obtained
a highly simplified model that focuses
on the major intracranial compartments—
brain tissue, cerebral vasculature, and CSF
space—and the associated variables (Fig.
1B). The variables involved in the model
are ABP at the level of the cerebral vascu-
lature, CBF at the inlet of a major cerebral
artery, and ICP. Our lumped model rep-
resents the relevant physiological mecha-
www.Scie
nisms that couple these variables at the seconds-to-minutes time
scale. The much slower processes of CSF production and absorption
were neglected. The model also captures the fact that ICP, rather than
systemic venous pressure, establishes the downstream pressure for
cerebral perfusion. This is a consequence of the Starling resistor effect,
resulting from the collapse of the cerebral veins owing to ICP being
greater than venous pressure (27); it is also the reason that CPP is
defined as the difference between mean ABP and ICP, rather than be-
tween mean ABP and systemic venous pressure.

Our model is conveniently specified by its electrical circuit analog
(Fig. 1C), where pressures are represented by voltages, and flows by
currents. The instantaneous ABP and CBF at time t are represented by
the voltage pa(t) and the current q(t), respectively. The effective
resistance of the cerebral vasculature supplied by the middle cerebral
artery (MCA) is represented by the resistor R, and the effective com-
pliance of this cerebral vasculature and surrounding brain tissue is
represented by the capacitor C. Our algorithm for estimation of ICP—
with simultaneous estimation of R and C—resulted from requiring the
model constraints to be satisfied as closely as possible by the obtained
measurements, over an estimation window comprising the data asso-
ciated with several consecutive beats, and under the assumption that
ICP, R, and C are constant over that window.

For each estimation window, the algorithm generated one nICP
estimate, which can be considered an estimate of the mean ICP over
the estimation window. The estimation window had to be long
enough (more than five beats) to allow some averaging of the data
over multiple beats, with a corresponding attenuation of the effects
of measurement noise, respiratory artifacts, and other such perturba-
tions. However, the window also needed be short (≤60 beats) com-
pared to the time scales of significant transients in the underlying ICP.

The ABP in our model was arterial pressure at the MCA, whereas
our ABP measurement was made at the radial artery. These two ar-
terial pressure waveforms undoubtedly differ in transit time from the
heart and in pulse morphology; their mean values are close, however,
provided measurements are taken with respect to a common
reference. Although there is no straightforward way to correct for
morphological differences, our algorithm determines and applies an
appropriate time shift to the measured radial artery ABP on the esti-
mation window to obtain a waveform that can serve as a plausible
proxy for ABP at the MCA.
ICP

ICP

A B C
Skull

CSF

ABP

Brain

CBF Arteries Veins

ICP

BT

AN

CSF

Skull

Fig. 1. Progressive abstraction of cerebrovascular physiology. (A) Relevant cerebrovascular anatomy:
brain tissue (BT), cerebrospinal fluid (CSF), and cerebral arterial network (AN). (B) Schematic representa-

tion of the main cerebrovascular compartments and associated physiological variables: cerebral blood
flow (CBF), arterial blood pressure (ABP), and intracranial pressure (ICP); the collapsed venous segment is
also shown. (C) Lumped circuit-model representation of cerebrovascular physiology: CBF q(t), cerebral
arteriovenous flow q1(t), and ABP pa(t). ICP denotes both extraluminal pressure and the effective
downstream pressure for cerebral perfusion.
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Similarly, our measurements actually obtained CBFV rather than
CBF. To the extent that the relationship between these two can be ap-
proximated by just a scale factor, our method can use CBFV instead of
CBF. This is because the particular structure of the model constraints
causes the ICP estimate to be insensitive to any scaling of CBF, as long
as this scaling remains constant over each estimation window. The
ICP estimate is therefore expected to be relatively insensitive to the
cross-sectional area of the artery, the blood velocity profile across
the vessel, and deviations of the insonation angle from its optimum,
provided the combined effect of all these can indeed be captured
(within each estimation window) by a single scale factor. When bilat-
eral CBFV recordings are available, the ICP estimates can be obtained
from the left and right sides separately, though using a common ABP
waveform.

Method validation in patients with TBI
Validation of our method required a data set comprising simultaneous
recordings of ABP, CBFV, and invasive ICP waveforms, all referenced
to a common clock. Such carefully synchronized data are quite rare
but were available to us from comatose patients with severe closed-
head injury admitted to neurological intensive care at Addenbrooke’s
Hospital, University of Cambridge, UK, between 1992 and 1997. Data
acquisition was part of routine clinical care for daily assessment of
cerebral autoregulation after TBI. In total, we used 45 records from
37 patients (some patients were examined more than once during
their hospital stay) (table S1). These records for our blinded analysis
were picked from the data archive to represent a wide range of ICP
variations (0 to 100 mmHg) as well as substantial transients within a
record (a change of up to 50 mmHg over the course of a few minutes).

The invasive ICP waveform was recorded from an indwelling pa-
renchymal probe (Fig. 2A). Each patient record also contained simul-
taneously captured continuous waveforms of ABP from radial-artery
catheterization and CBFV from TCD ultrasonography of the MCA,
with bilateral recordings available for 30 of those records from 25 pa-
tients (Fig. 2B). The record lengths ran from 10 to 240 min. After ex-
cluding data segments in which either the ABP or the CBFV waveform
was dominated by significant noise or artifact, we were left with a total
of about 35 hours of usable recorded data, which equaled more than
150,000 heartbeats. The patient population comprised 26 males and
11 females, with a median age of 25 years and a median Glasgow Coma
Scale (GCS) score of 5 (on a scale of 3 to 14), indicating severe TBI on
admission. Further patient information, including the Glasgow Out-
come Score (GOS) at 6 months after hospitalization, is provided in
table S1.

In the blinded first stage of our protocol, the ABP and CBFV wave-
forms alone were used to construct our ICP estimates. The estimates
were then compared against the invasively obtained ICP measure-
ments in the second stage.

ICP estimation performance
In the results presented below, our ABP time-shift correction has been
limited to picking a single time shift for each record (rather than for
each estimation window), computed as optimal overall for the entire
record. Furthermore, for uniformity, the results are presented for 60-
beat estimation windows. Using nonoverlapping windows of this size,
we generated ICP estimates faster than once per minute, on average.
The choice of a 60-beat window allowed averaging over several respi-
ratory cycles. It is also possible to generate an estimate at each beat,
www.Scie
even with a window comprising several beats, by “sliding” the estima-
tion window one beat at a time. This corresponds to beat-by-beat es-
timation of ICP that has been averaged over the corresponding
window. Before summarizing our estimation results across all the data
in the 45 patient records (table S2), we present the results for four
specific patients (Fig. 3). The results provide some orientation on
the data and on the quality of the estimation results and also illustrate
the range of dynamic variations represented. The reported ICP is the
beat-averaged ICP waveform, computed for every beat.

Among the more demanding tests of estimation performance is
when the underlying ICP goes through substantial changes, as in
the case of a “plateau wave,” in which ICP can spontaneously rise
quite sharply to a level that is held for some time before returning
to its previous baseline (28, 29). One example (Fig. 3A) was recorded
from a 23-year-old male (GCS = 7; patient record “AQ”). Our nICP
estimates, computed in this instance on a sliding 60-beat window, closely
tracked the transients in invasively measured, beat-averaged ICP.
The root mean squared error (RMSE) over all beats was 5.1 mmHg,
the mean error (bias) was 3.9 mmHg, and the SD of error (SDE) was
3.2 mmHg. The RMSE, bias, and SDE are interrelated: the mean
squared error (RMSE squared) is essentially the sum of the squared
Time (s)

ICP (mmHg)

Time (s)

ABP (mmHg)

CBFV (cm/s)

A

B

PP

VC

TCD

RAC

0

80

160

0 1 2 3
0

50

100

0 1 2 3
0

50

100

MCA

Fig. 2. Schematic representation of data acquisition, showing representa-
tive ICP, ABP, and CBF velocity (CBFV) waveforms. (A) Possible direct,

invasive recordings of ICP over time through a parenchymal probe (PP)
or ventricular catheter (VC). (B) Invasive recording of ABP waveform
through radial artery catheterization (RAC) and noninvasive recording of
middle cerebral artery (MCA) blood flow velocity waveform by transcranial
Doppler (TCD) ultrasonography, used together for noninvasive estimation
of ICP.
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bias and the squared SDE. The RMSE is thus a useful aggregate
measure of accuracy, whereas the SDE is a measure of precision or
repeatability.

For all remaining results, the nICP estimates were computed on
nonoverlapping (rather than sliding) 60-beat windows. In computing
the corresponding error statistics, these estimates were referenced
against ICP averaged over the associated window.

Another patient, a 30-year-old male (GCS = 3; patient record
“AK”), exhibited severe progressive intracranial hypertension (Fig.
3B). The nICP estimates closely tracked measured ICP, both during
the initial 15min when ICP held steady and during the subsequent rise
in ICP. The RMSE here was 6.0 mmHg, with a bias of −3.5 mmHg and
an SDE of 5.0 mmHg.

A case in which our estimation algorithm fared less well involved
two successive plateau waves in a 17-year-old male (GCS = 5; patient
record “AO”) (Fig. 3C). The RMSE in this record was 10.2 mmHg,
the bias was 3.9 mmHg, with an SDE of 9.4 mmHg. Although nICP
closely tracked measured ICP in the initial part (<50 min) of this 4-hour
recording, it deviated substantially from the measured ICP in portions
of the remaining time. Nevertheless, the estimated ICP still captured
the duration and amplitude of the second plateau wave as well.

It is also of interest to know how the estimation algorithm per-
forms when ICP is closer to its normal range of 5 to 15 mmHg. In
a 15-min recording from a 32-year-old female (GCS = 7; patient record
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“AR”), the nICP estimate tracked the mea-
sured ICP (Fig. 3D), with an RMSE of
5.4 mmHg, a bias of −4.8 mmHg, and an
SDE of 2.5 mmHg.

We summarize the estimation per-
formance across all subjects in the form
of Bland-Altman plots (30) of the estima-
tion error, nICP − ICP, plotted against
(nICP + ICP)/2 (Fig. 4). Here (as in
Fig. 3, B to D), nICP is the estimate com-
puted over nonoverlapping 60-beat
windows and ICP denotes the average
measured over the corresponding win-
dows. Each plot was augmented by the
corresponding error histogram, on which
the plot of a Gaussian distribution of the
same bias and SDE is superimposed for
visual comparison.

In the 30 patient records in which bi-
lateral CBFV recordings were available,
we estimated ICP for each 60-beat win-
dow from the right- and left-sided CBFV
signals independently and then averaged
the resultant estimates to obtain nICP for
that window. In the remaining 15 patient
records in which only unilateral CBFV
recordings were available, no such bilat-
eral averaging could be performed.

The error betweennICP andmeasured
ICP for all nonoverlapping, 60-beat
windows across all patients (a total of
2665 estimates from nonoverlapping data
segments) showed a bias of 1.6 mmHg
and SDE of 7.6 mmHg (Fig. 4A). Aver-
www.Scie
aging these estimation results over 10 consecutive 60-beat windows in
each patient resulted in 287 comparisons of nICP with ICP, again using
disjoint data segments. The bias remained at 1.6 mmHg, but the SDE
dropped to 6.9 mmHg.

When we confined our analysis to only those 30 patient records
for which we had bilateral CBFV recordings and obtained nICP by
averaging the ICP estimates from the right and left side, our results
improved. Using 60-beat windows (1673 total estimates), the bias and
SDE were then 1.5 and 5.9 mmHg, respectively (Fig. 4B). Again aver-
aging these estimation results over 10 consecutive 60-beat windows
(180 total comparisons), the bias remained at 1.5 mmHg, but the
SDE dropped to 4.9 mmHg.

We also evaluated our estimates on a patient-record basis rather
than data-window basis, comparing the average ICP and nICP values
for each of the 45 patient records. The bias and SDE for this case were
0.9 and 6.5 mmHg, respectively (Fig. 4C).

The correlation coefficient between nICP and ICP, which is a
measure of how well ICP can be predicted by an affine function of
nICP, is often quoted in the literature on nICP estimation. This cor-
relation coefficient was determined to be 0.90 for the data obtained
on the 2665 nonoverlapping estimation windows (Fig. 4A). The
analysis by Bland and Altman (30) shows that a high correlation co-
efficient is indeed to be expected for such a case, because the
underlying ICP in our case varies over a range of 100 mmHg,
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Fig. 3. Comparison of measured and estimated ICP in four brain-injured patients. In (A), ICP was esti-
mated on a sliding 60-beat data window. In (B) to (D), the estimates were obtained on 60-beat non-

overlapping data windows. (A) Single plateau wave. (B) Severe progressive intracranial hypertension.
(C) Two consecutive plateau waves. (D) Borderline normal ICP. All patient data are summarized in table S2.
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whereas nICP tracks it with a notably smaller SDE of 7.6 mmHg.
Performing the same computation for the bilateral data set compris-
ing 1673 windows (Fig. 4B), the correlation coefficient dropped to
0.76 despite the smaller SDE of 5.9 mmHg, owing to the smaller
range of underlying ICP variation (with only a few data points above
40 mmHg). A similar computation for the 45 estimates obtained on
www.Scie

20
12
a patient-record basis (Fig. 4C) yielded a correlation coefficient of
0.92, reflecting the fact that the average ICP covers a range of
about 75 mmHg across these records, whereas the corresponding
SDE is under 6 mmHg.

Additional perspective on our results comes from examining the
ability of the nICP estimates to correctly identify elevated ICP within
our data set. A common threshold for treatment in TBI is an ICP of
20 mmHg (5), so we took ICP >20 mmHg as our definition of
elevated ICP. For the 2665 data pairs (Fig. 4A) and using an nICP
of 20 mmHg as the threshold, we obtained a sensitivity of 83%
and a specificity of 70% for detection of elevated ICP. A full receiver
operating characteristic (ROC) was obtained by varying the nICP
threshold from 0 to 100 mmHg (Fig. 5), with the definition of
elevated ICP still being ICP >20 mmHg. This resulted in an area un-
der the curve (AUC) of 0.83 for the ROC. We repeated this procedure
on a patient-record basis. Using the earlier nICP threshold of 20 mmHg,
the sensitivity and specificity were 90 and 80%, respectively. The ROC
in this case (Fig. 5), again obtained by varying the nICP threshold, had
an AUC of 0.88.
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Referencing against ventricular ICP
Ideally, our nICP validation should have been against ventricular
ICP measurements, because these are regarded as the clinical stan-
dard. However, only intraparenchymal ICP measurements were
available to us. Because parenchymal probes themselves show error
against the ventricular standard, we derived what the errors in our
validation results would be if nICP was compared against ventricular
measurements.

If Ip is the parenchymal measurement and Iv is the ventricular
measurement, then our validation error referenced against the paren-
chymal probe can be expressed as follows:

nICP − Ip ¼ ðnICP − IvÞ − ðIp − IvÞ ð1Þ
where (nICP − Iv) is the estimation error our method would have if
referenced to the ventricular standard, and (Ip − Iv) represents the er-
ror of the parenchymal probe relative to the ventricular measurement.
Taking expected values and rearranging yields

biasðnICP − IvÞ ¼ biasðnICP − IpÞ þ biasðIp − IvÞ ð2Þ
Turning to variances, if the two error terms in parentheses in

Eq. 1 are uncorrelated (see Discussion), then the error variances are
related by

varðnICP − IpÞ ¼ varðnICP − IvÞ þ varðIp − IvÞ ð3Þ
which can be rearranged as

varðnICP − IvÞ ¼ varðnICP − IpÞ − varðIp − IvÞ ð4Þ

DISCUSSION

Performance analysis and benchmarks
The accuracy measures for our nICP estimation approach are
competitive with all other noninvasive methods for ICP estimation
reported in the literature to date (10), even when these others have
to be calibrated or trained on invasive ICP measurements from the
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Fig. 4. Bland-Altman plots of overall estimation performance. ICP is mean
measured ICP and nICP is the noninvasive estimate, each computed on a

60-beat estimation window. (A) ICP and nICP on 2665 nonoverlapping
windows from 45 patient records. (B) ICP and nICP on 1673 nonoverlapping
windows from 30 records with bilateral CBFV recordings, where averaging of
left and right estimates reduced the bias and SDE from (A). (C) ICP and nICP
averaged across all windows in each of 45 patient records. For all three
plots, the bias is shown as the dashed line, and dash-dotted lines indicate
the limits of agreement, computed as bias ± 2 SDE.
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same patient or a collection of patients [for example, (22–24)]. A
good benchmark for noninvasive, calibration-free, patient-specific es-
timation of absolute ICP is the previously mentioned approach that
applied external pressure on the eyeball while monitoring ophthalmic
artery flow (21). Referenced to lumbar puncture with pressure cover-
ing a range of 3 to 37 mmHg, the method achieved a bias of 0.9 mmHg
and SDE of 6.2 mmHg in a total of 57 comparisons. However, limiting
factors were the data acquisition time of 5 to 10 min per estimate and
the intrusiveness of such an ocular procedure, both of which make the
approach unsuited for continuous monitoring. Furthermore, the abil-
ity of this approach to estimate ICP levels higher than around 40 mmHg
has yet to be established. In contrast, our approach can produce an
estimate with just 5 to 60 beats of data (less than a minute), uses data
obtainable through standard clinical modalities, allows continuous
monitoring, and has demonstrated good performance for ICP as high
as 100 mmHg.

In establishing targets for the desired accuracy of noninvasive
estimation methods, one should keep in mind that intra-beat and
respiration-induced fluctuations of ICP are normally in the range of
2 to 3 mmHg, so it is unlikely that an RMSE smaller than 3 mmHg is
required for ICP monitoring. It is also helpful to examine the accuracy
of current invasive methods and their mutual concordance. Ventricular
and parenchymal pressure measurements are the primary approaches
to invasive monitoring of ICP in clinical settings. The pressure as mea-
sured by a fluid-filled catheter located in a lateral ventricle remains the
clinical gold standard against which other ICP measurement modalities
ought to be evaluated; however, parenchymal and epidural probes are
also often compared to one another.

Simultaneous measurement of ICP by a parenchymal probe and
ventriculostomy showed a bias of −1.2 mmHg and an SDE of 3.4 mmHg
in one study (31), although parenchymal probes have exhibited larger
errors and drift over time in other studies (32–34). Simultaneous mea-
surements of ICP by a parenchymal probe and an epidural probe have
shown a bias of 4.3 mmHg, with an associated SDE of 8.5 mmHg (35).
Subdural screws are deemed unreliable because of their relatively poor
accuracy and tendency to underestimate high ICP, with median dif-
www.Scie
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ferences greater than 10 mmHg in 40 to 60% of comparisons against
the ventricular catheter (36).

Given the above performance characteristics, our nICP estimation—
with a bias under 2 mmHg and SDE under 6 mmHg—performs better
than the invasive epidural and subdural measurements that are still
used in current clinical practice. Furthermore, if intermittent ICP es-
timation suffices, temporal averaging of our nICP estimates reduces
the RMSE. This was evident in the results presented for 10-window
averaging, which preserved the bias at 1.5 mmHg and reduced the
SDE from 5.9 to 4.9 mmHg in the case of 30 records with bilateral
measurements.

As shown in Eq. 2, the bias of our nICP relative to ventricular mea-
surements will be the sum of its bias relative to parenchymal measure-
ments and the bias of the parenchymal measurements relative to the
ventricular standard. Thus, the bias in our method relative to the ven-
tricular standard might be greater or less than the bias obtained in our
validation results, depending on the bias of the parenchymal probe.
Similarly, Eq. 4 shows that the precision of our estimates referenced
to the ventricular standard could improve over the precision obtained
in our validation results. The derivation of Eq. 4 assumed that the er-
rors between parenchymal and ventricular measurements are uncor-
related to the errors between our nICP and the same ventricular
measurements. This assumption that the two errors are uncorrelated
is plausible because very different measurement modalities are in-
volved. Our approach uses ABP and CBFV measurements along with
a model, whereas the parenchymal probe involves a solid-state sensor
in the brain parenchyma.

An expected use of an nICP estimate would be for detection of
elevated ICP. The potential of this approach is illustrated by our
ROC analysis (Fig. 5), whose results are comparable with those re-
ported, for example, in the setting of optic nerve sheath diameter
measurement for detection of elevated ICP (37). However, our patient
population here was selected to display a large range of ICPs and is
therefore not necessarily representative of the population in which
such a test would primarily be applied. The performance on a pop-
ulation displaying a smaller range of ICP variation might not be as
good.

Although the accuracy of a measurement method is certainly one
of its most important performance characteristics, accuracy by itself
may not be the primary performance measure in every clinical situa-
tion. For example, in particular pathologies, it might be adequate to
track changes and trends in ICP, rather than track its absolute value;
in this case, a bias may be of less concern, as long as it is relatively
constant. Our nICP tracks plateau-wave changes as large as 50 mmHg
over the course of 5 min (Fig. 3C), and in fact does so with low bias
and SDE.

Features of our approach
Our approach uses routinely acquired signals, provides beat-by-beat
and patient-specific estimates of ICP, does not require any training
on population data, does not need calibration, and is applicable across
a large range of ICP variations. Rather than relying on statistical asso-
ciations, we leverage the underlying dynamic physiological relation-
ships to generate patient-specific estimates of ICP.

The simple dynamic model of cerebrovascular dynamics in our
framework is similar to the Windkessel model of systemic vascular
dynamics (38). This model is widely used in the cardiovascular domain
because it contains a small number of physiologically interpretable
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Fig. 5. Receiver operating characteristic (ROC) for detection of intracranial
hypertension, defined as ICP > 20 mmHg. One ROC was computed for all

2665 nICP/ICP data pairs (red), and a second one for nICP/ICP data aver-
aged across each of the 45 patient records (blue).
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aggregate parameters that can be robustly estimated from the exper-
imental data. Similar models have been used to some extent in the cere-
brovascular setting (39, 40). A key difference of our model from these
other cases is in pegging downstream pressure for CBF as ICP rather
than systemic venous pressure; this is crucial for estimating ICP from
ABP and CBFV (41). More detailed models can be constructed (27), but
it becomes fundamentally difficult to identify the more numerous param-
eters of such models from routine clinical measurements.

Simple static models relating available measurements to the phys-
iological variables of interest underlie some commonly used clinical
measurement modalities, such as pulse oximetry. The use of multi-
variable dynamic physiological models for similar purposes in clinical
monitoring is still quite rare. However, extracting clinically meaningful
information in real time from multiple channels of high-resolution
data virtually mandates the use of such physiologically based compu-
tational models. Our approach to nICP estimation differs most funda-
mentally from previous attempts in its use of the salient dynamic
physiological relationships among ABP, CBFV, and ICP.

Current limitations and future work
We have so far implemented our estimation algorithm in batch mode.
However, the computations involved can be carried out in real time.
Apart from the preprocessing steps—such as noise filtering, beat-onset
detection, and time-shift estimation—the computation of our ICP
estimate entailed only the least square error solution of two linear
systems of equations, each with one unknown (the compliance in
one case, and the resistance in the other). These are relatively trivial
computations whose complexity varies linearly with the size of the es-
timation window. For example, our Matlab (The MathWorks) imple-
mentation took 0.13 s on a laptop (dual-core, 1.8 GHz) to compute
continuous estimates for the 13-min patient record shown in Fig. 3D,
producing 13 nICP estimates in total. Additionally, because our
algorithm provides one ICP estimate for each estimation window—
without reference to data outside that window—it can be used for spot
assessment or intermittent monitoring.

Further reductions in bias and SDE will be necessary to match the
accuracy of parenchymal probes referenced against ventricular cathe-
ters. Because we extract detailed features of the ABP and CBFV wave-
form morphology on a beat-by-beat basis, the estimation performance
directly depends on the signal quality (time and amplitude resolution,
noise, and artifact) of the acquired waveforms. Our validation tests
were run on archived data collected over a multiyear period from
1992 to 1997, using varying equipment, personnel, and conditions.
We anticipate that data collected on state-of-the-art instruments—
and specifically with the requirements of our nICP estimation al-
gorithm in mind—will likely improve the accuracy of our method.
For example, the sampling frequency of our validation data ranged
from 20 to 70 Hz, whereas modern instrumentation provides samples
at 125 Hz or higher.

The performance of our estimation routine critically depends on
accurate time alignment of the ABP and CBFV waveform features.
We performed a carefully chosen time shift of the peripherally
measured ABP waveform to better approximate the required ABP
at the location of the CBFV waveform. We have thus far only applied
a single time shift to each entire patient record, although our method
allows for estimation of a new time shift for each estimation window.
It is possible that adaptive determination of the optimal time shift on a
window-by-window basis will improve results. Also, a higher sampling
www.Scie
frequency would allow finer determination of the time shift, because
the offset is currently restricted to multiples of the sampling interval.

Our method should be tested on larger patient pools, with more
diverse pathological characteristics than the group presented here,
which comprises cases of severe closed-head injury. This validation
can be pursued in patients with subarachnoid hemorrhage, hydro-
cephalus, or idiopathic intracranial hypertension, because the standard
of care permits invasive measurement of ICP for these conditions. An
additional task will be to validate the use of a strictly noninvasively
obtained ABP waveform (42) in place of a measurement at the radial
artery. Although the latter measurement is commonly available in the
critical care setting, catheterization of a major artery will not be an
option in many situations in which ICP estimates are desirable. We
have not made any use in this paper of the (arbitrarily scaled) esti-
mates of cerebrovascular resistance and compliance, as seen from the
MCA. These parameter estimates are obtained as adjuncts to our ICP
estimates and associated CPP estimates, and determine the impedance
of the local vascular bed. The dynamic response of the resistance and
compliance estimates to changes in CPP may reflect the state of cere-
brovascular autoregulation (43–45).

Overall, our results suggest that noninvasive, continuous, calibration-
free, and patient-specific estimation of ICP with clinically acceptable
accuracy is feasible. Such technology has the potential to markedly im-
prove neuromonitoring in a variety of conditions in which ICP cannot
be assessed currently.
METHODS

Data preprocessing
Analysis of the anonymized data used in this study was approved by
the Neurocritical Care Users’ Committee at Addenbrooke’s Hospital
and by the Massachusetts Institute of Technology (MIT) Institutional
Review Board.

In cases in which the input waveforms were contaminated with
high-frequency noise, we applied a low-pass filter with a cutoff fre-
quency at 16 Hz (chosen appropriately for the noise observed in
our data). We up-sampled all data records to 125 Hz from their native
sampling frequencies of 20 to 70 Hz. We subsequently applied a beat-
onset detection algorithm (46) to mark the onset of each individual
blood pressure wavelet. Finally, we reviewed the beat-onset annota-
tions to delete double detections, insert missed detections, and exclude
beats of low signal quality.

Estimation algorithm
The instantaneous CPP, pa(t) − ICP, in our circuit model (Fig. 1C)
drives two components of flow, which together constitute the instan-
taneous CBF, q(t). One component represents the main unidirectional
flow through the cerebrovascular resistance, whereas the other
component corresponds to the transient distention and contraction
of the compliance. Thus,

qðtÞ ¼ paðtÞ − ICP

R
þ C

dðpaðtÞ − ICPÞ
dt

ð5Þ

We assumed that ICP in each estimation window was essentially
constant at its mean value within that window. This assumption
corresponds to neglecting the effects of the intra-beat pulsations of
ICP relative to those of pulsations in ABP, and neglecting the effects
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of slower variations in beat-averaged ICP over this estimation window,
such as those induced by respiration. Similarly, despite the variations
under autoregulation that are expected in R and C, we assumed that
the effects of these variations were negligible over a short estimation
window. These assumptions allowed us to set the derivative (or rate of
change) of ICP to 0 in the estimation window, so the equation sim-
plified to
qðtÞ ¼ paðtÞ − ICP

R
þ C

dpaðtÞ
dt

ð6Þ

Note that a scaled version of q(t), say aq(t), satisfies
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aqðtÞ ¼ paðtÞ − ICP
R=a

þ aC
dpaðtÞ
dt

ð7Þ

which is identical to Eq. 6, except that R and C have been scaled, with
ICP and pa(t) left unchanged. This justifies our using CBFV instead
of CBF, under the assumption that the two are related just by a scale
factor that is constant over each estimation window. In our algorithm,
we set a = 1, that is, used CBFV as though it was CBF, with the result
that our estimated R and C are in arbitrary units.

We used Eq. 6 to develop a two-step estimation algorithm. Step I
exploited the fact that the sharp transition in pa(t) during arterial sys-
tole induces a flow in the compliance that is large compared to that
through the resistor, so the input flow q(t) can be attributed primarily
to the compliance branch in the model:
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qðtÞ ≈ C
dpaðtÞ
dt

ð8Þ

Letting tb and te indicate the beginning and end, respectively, of
the systolic upstroke in pa(t), we can compute our estimate Ĉ of C by
integrating Eq. 8 over the transition period, and solving the resulting
equation below for Ĉ:

ðpaðteÞ − paðtbÞÞĈ ¼ ∫tetbqðtÞdt ð9Þ

However, to mitigate the effects of noise, we obtained the least square
error solution Ĉ of the system of equations that resulted from writing
Eq. 9 for each beat in the estimation window.

Step II used the result of step I to estimate the flow through the
resistance according to

ˇ

q1ðtÞ ¼ qðtÞ − Ĉ
dpaðtÞ
dt

ð10Þ

Finite differencing was used to approximate the derivative.
Expressing ICP in terms of q

ˇ

1ðtÞ using the relation
ICP ¼ paðtÞ − Rq

ˇ

1ðtÞ ð11Þ
allowed us to construct our estimate R

ˇ

of R using q

ˇ

1ðtÞ and pa(t) eval-
uated for two time instants t1 and t2 within a beat, again invoking our
assumption that ICP is essentially constant during this beat (and
throughout the estimation window). With this, R

ˇ

can be obtained by
solving

ˇ

ðq

ˇ

1ðt2Þ � q

ˇ

1ðt1ÞÞR¼ paðt2Þ − paðt1Þ ð12Þ
To reduce the sensitivity of this computation to the noise in q

ˇ

1ðtÞ,
we picked t1 and t2 to lie near the local minimum and maximum of
the ABP pulse, respectively, and thereby maximize q

ˇ

1ðt2Þ � q

ˇ

1ðt1Þ. As
www.Scie
with the compliance estimate, we then found the least square error
solution R

ˇ

of the system of equations that resulted from writing
Eq. 12 for each beat of the estimation window.

Finally, rewriting Eq. 11 in terms of beat-to-beat averages then gave
the desired ICP estimate:
dICP ¼ paðtÞ − R

ˇ ˇ

q1ðtÞ ð13Þ

where the overbars denote time averages computed over the duration
of one estimation window.

Time-shift correction of measured ABP
To estimate the time shift between radial ABP (ABPrad) and ABP at
the MCA (ABPmca), we developed and applied two approaches mo-
tivated by the model in Eq. 6. The first approach exploited the fact
that near the inflection point of the ABP pulse during the systolic
upstroke, the term dpaðtÞ

dt attains its maximum value. The value of
the derivative rolls off to zero at the peak of systole or the end of
diastole. Thus, within a given beat period, the maximum value of q(t)
must occur close to the time corresponding to the systolic inflection
point of pa(t). The desired time shift is then taken to be the shift re-
quired to align the inflection point of the ABPrad pulse with the max-
imum of the CBFV pulse.

The second approach was based on the observation that in the
vicinity of the local extrema of the ABP pulse, the compliance-related
term in Eq. 6 can be ignored. The relationship between CBF and
ABPmca then becomes largely resistive and is determined by R and
ICP only. Exploiting this insight, we developed a procedure to iden-
tify the local maxima and minima of ABP within each cardiac cycle
and determine through regression an affine relationship between
CBFV and ABPrad at a candidate time shift. The regression was re-
peated for various time shifts to find the one that yielded the smallest
residual error, at which point the relationship between CBFV and ABP
was closest to being resistive.

To mitigate the effects of noise and sampling, we performed each
time-shift calculation over a window of several consecutive beats. The
median of the time shifts associated with all the windows in a record
was used as the ABP time shift for the entire record. If the two time-
shift estimation approaches yielded different values, we generated the
corresponding nICP estimate for each and reported the average of the
two estimates.
SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/4/129/129ra44/DC1
Table S1. Summary of information for each patient record (n = 45).
Table S2. Summary of estimation performance by patient record.
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