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Abstract Although mathematical modeling has a long and very rich tradition in
physiology, the recent explosion of biological, biomedical, and clinical data from
the cellular level all the way to the organismic level promises to require a re-
newed emphasis on computational physiology, to enable integration and analysis of
vast amounts of life-science data. In this introductory chapter, we touch upon four
modeling-related themes that are central to a computational approach to physiology,
namely simulation, exploration of hypotheses, parameter estimation, and model-
order reduction. In illustrating these themes, we will make reference to the work of
others contained in this volume, but will also give examples from our own work on
cardiovascular modeling at the systems-physiology level.

1 Introduction

Mathematical modeling has a long and very rich history in physiology. Otto Frank’s
mathematical analysis of the arterial pulse, for example, dates back to the late 19th
century [12]. Similar mathematical approaches to understanding the mechanical
properties of the circulation have continued over the ensuing decades, as recently
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reviewed by Bunberg and colleagues [5]. By the middle of the last century, Hodgkin
and Huxley had published their seminal work on neuronal action-potential initia-
tion and propagation [25], from which models of cardiac electrophysiology readily
emerged and proliferated [33]. To harness the emergent power of first analog and
later digital computers, mathematical modeling in physiology soon shifted from an-
alytical approaches to computational implementations of governing equations and
their simulation. This development allowed for an increase in the scale of the prob-
lems addressed and analyzed. In the late 1960s, Arthur Guyton and his associates,
for example, developed an elaborate model of fluid-electrolyte balance that still im-
presses today for the breadth of the physiology it represents [16].

Since the days of Guyton’s initial work, the widespread availability of rela-
tively low-cost, high-performance computer power and storage capacity has enabled
physiological modeling to move from dedicated – and oftentimes single-purpose –
computers to the researcher’s desktop, as even small-scale computer clusters can
be assembled at comparatively little expense. The technological advancements in
computer power and digital storage media have also permitted increasingly copi-
ous amounts of biological, biomedical, and even clinical data to be collected and
archived as part of specific research projects or during routine clinical management
of patients. Our ability to collect, store, and archive large volumes of data from all
biological time and length scales is therefore no longer a rate-limiting step in sci-
entific or clinical endeavors. Ever more pressing, however, is the concomitant need
to link characteristics of the observed data streams mechanistically to the proper-
ties of the system under investigation and thereby turn — possibly in real-time as
required by some clinical applications [23] — otherwise overwhelming amounts of
biomedical data into an improved understanding of the biological systems them-
selves. This link is the mechanistic, mathematical and computational modeling of
biological systems at all physiological length and time scales, as envisioned by the
Physiome project [3, 8, 26].

Mechanistic mathematical models reflect our present-level understanding of the
functional interactions that determine the overall behavior of the system under in-
vestigation. By casting our knowledge of physiology in the framework of dynami-
cal systems (deterministic or stochastic), we enable precise quantitative predictions
to be made and to be compared against results from suitably chosen experiments.
Mechanistic mathematical models often allow us to probe a system in much greater
detail than is possible in experimental studies and can therefore help establish the
cause of a particular observation [22]. When fully integrated into a scientific pro-
gram, mathematical models and experiments are highly synergistic, in that the ex-
istence of one greatly enhances the value of the other: models depend on experi-
ments for specification and refinement of parameter values, but they also illuminate
experimental observations, allow for differentiation between competing scientific
hypotheses, and help aid in experimental design [22]. Analyzing models rigorously,
through sensitivity analyses, formal model-order reduction, or simple simulations
of what-if scenarios also allow for identification of crucial gaps in our knowledge
and therefore help motivate the design of novel experiments. Finally, mathematical
models serve as important test beds against which estimation and identification al-
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gorithms can be evaluated, as the true target values are precisely known and control-
lable [20]. It seems therefore that a renewed emphasis on computational physiology
is not merely a positive development, but an essential step toward increasing our
knowledge of living systems in the 21st century.

In this chapter, we will touch upon four main themes of mathematical modeling,
namely simulation, exploration of hypotheses, parameter estimation, and model-
order reduction. In addition to drawing upon our own work to illustrate these ap-
plication areas, we will point the reader to the work of others, some of which is
represented in this volume.

2 Simulation

Given a chosen model structure and a nominal set of parameter values, a central ap-
plication of mathematical modeling is the simulation of the modeled system. Closely
related to the simulation exercise is the comparison of the simulated model response
to experimental data. In the area of respiratory physiology, the contributions by
Bruce (Chapter ??) and Duffin (Chapter ??) in this volume are examples of such
applications of mathematical modeling. The contributions by Tin and Poon (Chap-
ter ??) and Ottensen and co-workers (Chapter ??) focus on modeling the respiratory
control system and the cardiovascular response to orthostatic stress, respectively.

Our own interest in the cardiovascular response to changes in posture led us to
develop a detailed lumped-parameter model of the cardiovascular system [17]. The
model consists of a 21-compartment representation of the hemodynamic system,
shown in Figure 1, coupled to set-point controllers of the arterial baroreflex and the
cardiopulmonary reflex, as depicted in Figure 2, that mimic the short-term action
of the autonomic nervous system in maintaining arterial and right-atrial pressures
constant (blood pressure homeostasis) [17, 22].

In the context of cardiovascular adaptation to orthostatic stress, numerous com-
putational models have been developed over the past forty years [4,9–11,15,24,27–
29,31,32,34,35,38,39,41–43,48,49,51]. Their applications range from simulating
the physiological response to experiments such as head-up tilt or lower body neg-
ative pressure [4, 9, 10, 15, 27–29, 31, 32, 38, 43, 50, 51], to explaining observations
seen during or following spaceflight [29,35,42,44,48,51]. The spatial and temporal
resolutions with which the cardiovascular system has been represented are corre-
spondingly broad. Several studies have been concerned with changes in steady-state
values of certain cardiovascular variables [35,41,43,48], others have investigated the
system’s dynamic behavior over seconds [15,24,27,28,34], minutes [4,9,10], hours
[29,42,51], days [29,39,42], weeks [29], or even months [38]. The spatial represen-
tations of cardiovascular physiology range from simple two- to four-compartment
representations of the hemodynamic system [4,15,31,32,48] to quasi-distributed or
fully-distributed models of the arterial or venous system [28, 35, 41, 43].



4 T. Heldt, G. Verghese, and R. Mark

In choosing the appropriate time scale of our model, we were guided by the
clinical practice of diagnosing orthostatic hypotension, which is usually based on
average values of hemodynamic variables measured a few minutes after the onset
of gravitational stress [7]. The spatial resolution of our model was dictated by our
desire to represent the prevailing hypotheses of post-spaceflight orthostatic intoler-
ance (see Section 3). To determine a set of nominal parameter values, we searched
the medical literature for appropriate studies on healthy subjects. In cases in which
direct measurements could not be found, we estimated nominal parameter values on
the basis of physiologically reasonable assumptions [17, 22]. We tested our simu-
lations against a series of experimental observations by implementing a variety of
stress tests, such as head-up tilt, supine to standing, lower-body negative pressure,
and short-radius centrifugation, all of which are commonly used in clinical or re-
search settings to assess orthostatic tolerance [17, 52].

Figure 3 shows simulations (solid lines) of the steady-state changes in mean arte-
rial blood pressure and heart rate in response to head-up tilts to varying angles of ele-
vation [17,19], along with experimental data taken from Smith and co-workers [40].
(The dashed lines in this and later figures from simulations indicate the 95% con-
fidence limits of the nominal simulation on the basis of representative population

Fig. 1 Circuit representation of the hemodynamic system. IVC: inferior vena cava; SVC: superior
vena cava.
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Fig. 2 Schematic representation of the cardiovascular control model. ∆PAA(t),∆PCS(t),∆PRA(t):
aortic arch, carotid sinus, and right atrial transmural pressures, respectively.

simulations [18].) In Figure 4, we show the dynamic responses of measured mean
arterial blood pressure and heart rate (lower panels) and the respective simulated
responses (upper panels) to a rapid head-up tilt experiment [17,21]. Figure 5 shows
the dynamic behavior of the same variables in response to standing up from the
supine position. The simulations of Figures 3 - 5 were all performed with the same
set of nominal parameter values, and the same population distribution of parameter
values. Similar dynamic responses in arterial blood pressure and heart rate to ortho-
static challenges have been reported by van Heusden [24] and Olufsen et al. [34],
and are reported by Ottesen et al. in this volume (Chapter ??) for the transition from
sitting to standing.
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Fig. 3 Simulated steady-state changes (solid lines) and 95% confidence intervals (dashed lines) in
mean arterial pressure (left) and heart rate (right), in response to head-up tilt maneuvers to different
angles of elevation. Data for young subjects (open circles) and older subjects (filled circles) from
Smith et al. [40].
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Fig. 4 Dynamic responses in mean arterial pressure (left) and heart rate (right) to a sudden head-
up tilt maneuver. Bottom panels show experimental recordings [21]; upper panels show simulated
responses [17].

Once a particular model structure has been chosen and simulations have been
calibrated and validated against suitable sets of experimental data, the ensuing sci-
entific step usually involves exploration of particular physiological hypotheses, or
detailed sensitivity analyses as pursued by Kappel (Chapter ??) or Ottesen (Chap-
ter ??) in this volume.
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Fig. 5 Dynamic responses (solid lines) and 95% confidence intervals (dashed lines) in mean arte-
rial pressure (left) and heart rate (right) to standing up. Bottom panels show recordings [21]; upper
panels show simulated responses [17].
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3 Exploration of Hypotheses

Using the model of the previous section, we were interested in gaining insight into
the cardiovascular system’s failure to adapt to the upright posture following space-
flight. By simulating the system-level hemodynamic response to a tilt or a stand
test under varying parameter profiles, we sought to identify which of the prevailing
physiological hypotheses lead to the system-level hypotension seen in affected as-
tronauts upon assumption of the upright posture. This approach can be viewed as
a targeted sensitivity analysis that differs from the more general explorations pre-
sented by Kappel (Chapter ??), in that the parameters to be varied are selected based
on a priori physiological considerations. Furthermore, the parameter values will be
subjected to larger perturbations than in the more local analysis of Chapter ??.

In our analysis, we choose to include those parameters that have been implicated
in contributing to the post-flight orthostatic intolerance phenomenon [17]. Our anal-
ysis therefore includes total blood volume, the venous compliance of the legs, the
end-diastolic compliance of the right ventricle, and the static gain values (both ar-
terial and cardiopulmonary) of arteriolar resistance and venous tone. We assess the
impact of parameter perturbations by analyzing the changes they induce in the mean
arterial pressure and heart rate responses to a 75◦ head-up tilt. In particular, we seek
to answer which of the parameters included in the analysis has the greatest impact
on mean arterial pressure and heart rate.

We address this question by repeatedly simulating tilt experiments while varying
each of the parameters by a certain percentage of their nominal values. In Figure 6,
we report the changes in mean arterial pressure and heart rate from their respective
supine baselines in response to a four-minute head-up tilt to 75◦ for varying levels
of total blood volume. We note that head-up tilt usually results in a slight increase
in mean arterial pressure measured at heart level, with a concomitant increase in
heart rate. Figure 6 reflects this fact as the baseline simulation (0% decrement in
total blood volume, or 70ml/kg of body weight) shows an increase in mean arte-
rial pressure of about 4mmHg and an increase of approximately 20beats/minute in

Fig. 6 Mean arterial pressure and heart rate changes induced by head-up tilt to 75◦. Dependence
on volume status. Mean response ± SE based on 20 simulations.
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heart rate. As blood volume is progressive reduced, the gentle rise in mean arterial
pressure is diminished, but generally maintained up to volume decrements of 5%.
Beyond that, the system fails to maintain mean arterial pressure despite incremen-
tally larger increases in heart rate. The reason for this behavior becomes clear when
we consider blood pooling in the dependent vasculature during tilt as a function
of hydration status. With increasing degree of hypovolemia, the amount of blood
volume pooled in the lower extremities becomes an increasingly larger fraction of
distending volume. It therefore becomes progressively more difficult for the cardio-
vascular system to maintain right atrial pressure, and thus cardiac output, during
head-up tilt.

In Figure 7, we display the results of the same analysis for the venous compliance
of the legs, the right-ventricular end-diastolic compliance, and the arterial and ve-
nous tone feedback gain values (top to bottom). Each of the simulations underlying
Figure 7 starts with the same baseline blood volume, which, for future reference, we
term the euvolemic baseline state. When comparing the results in Figure 7 with the
volume-loss results in Figure 6, it is obvious that deleterious changes in any of the
parameters shown in Figure 7 only marginally impact the hemodynamic response to
tilt if the volume status if euvolemic. In other words, in the absence of hypovolemia,
the body can tolerate significant detrimental changes in any of the other parameters
without developing a seriously compromised hemodynamic response to tilt.

Next, we demonstrate that this behavior can change drastically if the baseline
volume status is changed. In Figure 8, we vary the four parameters of Figure 7 by
the same fractional changes, yet their variation is superimposed on a baseline state
that is 5% hypovolemic compared to the euvolemic baseline states of Figures 6
and 7. The results demonstrate that against the backdrop of an otherwise benign
reduction in total blood volume, even modest 5% to 10% detrimental changes in
each of the parameters can significantly impact the hemodynamic response to tilt.

The results of the simulations show that the level of hydration has by far the
greatest impact on blood pressure homeostasis during tilt. Furthermore, the impact
of changes in other parameters varies significantly with the level of hydration. In
the euvolemic state, changes in the four parameters considered in Figures 7 and
8 have similar effects on the mean arterial pressure and heart rate responses. In
the hypovolemic case, changes in venous tone seem to impact the hemodynamic
response to tilt more when compared with the same fractional changes in the other
parameters, yet all of the parameters considered significantly influence the heart rate
and mean arterial pressure responses to head-up tilt.

The simulations presented in this section demonstrate the importance of blood
volume in maintaining mean arterial pressure during orthostatic stress. Changes in
the other parameters included in this analysis are largely inconsequential if total
blood volume is maintained near euvolemic levels (70ml/kg). However, if the base-
line state is hypovolemic, even relatively modest changes in these parameters can
aggravate the cardiovascular system’s failure to adapt properly to the upright pos-
ture. Reductions in both the arterial resistance gains and the venous tone gains affect
mean arterial pressure most; impairment of the venous tone feedback, however, has
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Fig. 7 Mean arterial pressure and heart rate changes in response to a 75◦ head-up tilt under varying
parametric conditions. Baseline volume status is euvolemic. Mean response ± SE based on 20
simulations.
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Fig. 8 Mean arterial pressure and heart rate changes in response to a 75◦ head-up tilt under varying
parametric conditions. Baseline volume status is 5% hypovolemic. Mean response ± SE based on
20 simulations.
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a stronger effect when the same fractional decrements in the nominal values are
considered.

Reductions in total blood volume in returning astronauts have been well estab-
lished, though the magnitude of the hypovolemia is highly variable. The work by
Waters and co-workers suggest a mean overall reduction of about 6% in male pre-
syncopal astronauts [47]. Our simulations give credence to the view that hypov-
olemia can be the principal mechanism of post-spaceflight orthostatic intolerance,
yet at an average level of 6% might not be soly responsible for the clinical picture
of the syndrome. Of particular importance, therefore, are perturbations to the α-
sympathetically mediated reflex pathways of arteriolar resistance and venous tone,
both of which depend on the peripheral neurotransmitter norepinephrine. Ramsdell
et al. demonstrated that an exogenous α-adrenergic agonist, when given to subjects
undergoing orthostatic stress testing at the conclusion of a prolonged bedrest proto-
col, significantly reduces the incidence of syncope or pre-syncopal symptoms [37].
Furthermore, Meck et al. showed that those astronauts who become pre-syncopal on
landing day fail to mount a significant vasoconstrictor response due to an inappro-
priately low release of norepinephrine in the upright posture [30]. Finally, Platts and
co-workers demonstrated that the same α-agonist used by Ramsdell was benefitial
in alleviating post-spaceflight orthostatic intolerance in a female astronaut who had
a prior history of orthostatic hypotension after previous missions [36]. In the con-
text of our model, failure to release norepinephrine at the smooth muscle synapses
is interpreted as a reduction in the gain from arterial blood pressure and right atrial
pressure to venous tone and arterial resistance.

Together, these experimental findings corroborate the results from our simulation
studies, namely that a critical combination of mechanisms might have to be invoked
to explain the phenomenon of post-spaceflight orthostatic intolerance, and that apart
from hypovolemia, detrimental changes to the feedback pathway to vascular smooth
muscle (venous tone and arteriolar resistance) play a dominant role.

4 Model Identification

Mechanistic physiological models tend to have relatively high spatial and tempo-
ral resolution for their ultimate application and therefore involve large numbers of
parameters and exhibit rich dynamic behavior, spanning several time scales. Such a
modeling approach, in which models are built from from detailed analysis of the un-
derlying physiological or biological processes, is commonly referred to as forward
modeling. Often, the purpose of modeling is to use the resultant model in conjunc-
tion with experimental data to estimate the values of some model parameters. Such
a strategy falls under the general umbrella of inverse methods in which attributes
of a system are estimated based on measurements that are only indirectly related to
these attributes [46]. The link between the attributes and the data is the mathematical
model.
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In such parameter estimation problems, the parameters of a model are tuned such
that a measure of error between the model output and a corresponding set of obser-
vations is minimized. Methods for solving this minimization problem depend quite
naturally on the error criterion and on the structure of the chosen model. Further-
more, the quality of the resultant parameter estimates also depends on the fidelity of
the available data.

In this volume, the contributions by Attarian and co-workers (Chapter ??), Banks
and co-workers (Chapter ??), Ottesen et al. (Chapter ??), and Hartung adn Turi
(Chapter ??) focus on specific aspects of inverse modeling. Dr. Attarian focuses
on the topic of Kalman filtering for both parameter and state estimation, while Dr.
Banks’ chapter provides an overview of statistical methods to address the parameter
estimation problem, particularly the issue of subset selection which we will touch
upon later in this section, too. Dr. Ottesen highlights the application of parameter
estimation methods to the clinical problem of estimating cerebrovascular variables.
Drs. Hartung and Turi apply parameter estimation to the identification of the repi-
ratory control system. The contribution by Dr. Bruce (Chapter ??) similarly focuses
on identifying respiratory control loops.

Our own interest in parameter estimation initially developed in the context of car-
diovascular applications, where the number of signals available from physiological
experiments are usually small in number. Quite often, the only signals recorded are
beat-to-beat mean arterial pressure and heart rate during rest or a particular stress-
test intervention to challenge the cardiovascular system. The models developed,
however, can be quite detailed in their representation of cardiovascular physiology.
Thus a disparity exists between the high resolution and rich dynamic behavior of
the model and the low resolution and limited dynamic behavior of the measure-
ments. In the parameter estimation setting, this disparity leads to a very sensitive
— or ill-conditioned — estimation problem, in which small changes to the input
data can lead to very large and obviously undesirable changes to the resultant pa-
rameter estimates. Since treatment of ill-conditioning is not commonly found in the
physiological modeling literature, we present in some detail one possible approach,
namely subset selection, to overcome this problem. Our exposition in the remainder
of this section is largely based on [17].

4.1 Non-linear least-squares estimation

If the model outputs are linear functions of the model parameters, and if the error
measure is chosen to be the sum of squares of the prediction error on each output, the
resultant minimization problem is the well-known linear least squares problem. If
the model output is a non-linear function of the parameters, the minimization prob-
lem is usually solved iteratively through a sequence of linear least squares problems
that involve the gradient or higher-order derivatives of the cost function.

Let Φ(ŷ(θ),y) denote a non-negative measure of error, or cost function, between
model output ŷ(θ)∈ Rn and experimental data y∈ Rn. Through the model output, Φ
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is an implicit function of the vector of model parameters θ ∈ Rm and can therefore
be considered a function from Rm to the non-negative real line, Φ = Φ(θ) : Rm→
R+∪{0}, for a given experimental data set. Since we aim to minimize this measure
of error iteratively, we seek a computational scheme that provides us with a new
parameter vector θ 1 such that Φ(θ 1) < Φ(θ 0) given an initial best guess θ 0. Once
such a θ 1 has been identified, it can assume the role of θ 0, and we can repeat the
computational scheme in an effort to reduce the measure of error even further.

Let us assume that a second-order Taylor series approximation Ψ of Φ(θ) is a
good approximation of the local behavior of the cost function for small perturbations
∆θ = θ −θ 0 around the initial parameter estimate. [Ψ(θ) is the best second-order
approximation to the surface defined by Φ(θ) around θ 0.] Ψ(θ) is given by

Ψ(θ) = Φ(θ 0)+
[

∂Φ

∂θ

]
θ 0

∆θ +
1
2

∆θ
>
[

∂ 2Φ

∂θ
2

]
θ 0

∆θ

where [∂Φ/∂θ ]θ 0
and

[
∂ 2Φ/∂θ

2]
θ 0

are the appropriate matrices of the first- and
second-order derivatives evaluated at the current best guess of the parameter vector
as indicated by the subscript θ 0. To find its minimum, we equate to zero the gradient
of Ψ(θ):

∂

∂θ
Ψ(θ) =

[
∂Φ

∂θ

]
θ 0

+
[

∂ 2Φ

∂θ
2

]
θ 0

∆θ = 0

which leads to the following condition for the stationary point θ 1:[
∂ 2Φ

∂θ
2

]
θ 0

(θ 1−θ 0) =−
[

∂Φ

∂θ

]
θ 0

If the inverse of the second-order derivative matrix exists, the stationary point is
given by:

θ 1 = θ 0−
[

∂ 2Φ

∂θ
2

]−1

θ 0

·
[

∂Φ

∂θ

]
θ 0

(1)

It can be shown that Φ(θ 1) < Φ(θ 0) if and only if the matrix of second-order
derivatives is positive definite [2].

Note that we have not yet specified the cost function Φ . The results obtained so
far only require it to be twice differentiable. Let us assume now that we are aiming
to minimize the square of the residual error r(θ) = ŷ(θ)−y between model output
and actual measurements, that is

Φ(θ) =
1
2
· ‖r(θ)‖2 =

1
2
· ‖ŷ(θ)−y‖2 =

1
2
· r>r→min

where the factor of 1/2 has been included for convenience, and the superscript >

denotes transposition. The gradient of this cost function is given by:
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∂Φ

∂θ

]
= J> · r(θ) where Ji j =

∂ ri(θ)
∂θ j

=
∂ ŷi(θ)

∂θ j

J∈ Rn×m denotes the Jacobian matrix of the error vector with respect to the parame-
ter vector. Similarly, we can compute the elements of the Hessian matrix H ∈ Rm×m

of second derivatives of the cost function:

Hi j =
∂ 2Φ

∂θi∂θ j
= (J>J)i j +

n

∑
l=1

rl ·
∂ 2rl

∂θi∂θ j
(2)

Note that for small residuals, the Hessian can be approximated by

Hi j =
∂ 2Φ

∂θi∂θ j
≈ (J>J)i j (3)

since the second term involves the elements of the vector of residuals directly. This
approximation is known as the Gauss-Newton approximation to the Hessian.

Inserting the expressions for the derivatives into Equation 1, we obtain the itera-
tive parameter updates of the Newton method:

H · (θ i+1−θ i) =−J> · r (4)

and the Gauss-Newton approximation thereof:

J>J · (θ i+1−θ i) =−J> · r (5)

Let R denote either the full Hessian H or its Gauss-Newton approximation J>J.
If R has full column rank, Equations 4 and 5 can be solved exactly or in a least
squares sense, depending on whether or not J> · r is in the column space of R. In
either case, however, the solution is unique, and efficient algorithms exist to solve
the set of linear equations numerically [14]. If, on the other hand, R is rank-deficient,
then the m columns of R actually contain less than m linearly independent vectors.
As a consequence, R is semi-definite with at least one of its eigenvalues at zero.
The following argument by Burth and co-workers [6] illustrates the problem of a
singular matrix R in the context of parameter estimation. Assume R has a single
eigenvalue at zero with some associated eigenvector ϑ . Within the limits of our
second-order approximation, ϑ can be added to any step direction without affecting
the error criterion, since

R · (θ i+1−θ i +ϑ) = R · (θ i+1−θ i)+R ·ϑ = R · (θ i+1−θ i) =−J> · r

This implies that we can arbitrarily change parameter values along the direction of
ϑ without affecting the error criterion. Such indeterminacy suggests that the param-
eters of the model cannot be estimated uniquely from the given measurements; the
estimation problem is said to be ill-conditioned.

Frequently, the matrix R is not exactly rank deficient but quite nearly so, in
the sense that the largest eigenvalue is orders of magnitude larger than the small-
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est eigenvalue. Closeness to singularity is measured by the condition number κ(R)
which, for real, symmetric matrices, is given by the ratio of the largest to the smallest
eigenvalue.

Burth reviews several related consequences of a large condition number for es-
timation problems [6]. We simply note here that a hallmark of an ill-conditioned
problem is its extreme sensitivity to small perturbations in either the experimental
data or the elements of the matrix R. In the following section we discuss subset
selection as an approach to overcome this ill-conditioning.

4.2 Subset selection

Subset selection aims to determine which parameter axes lie closest to the singu-
lar directions of the Hessian matrix [45]. Changes in the corresponding parameters
do relatively little to change the fit of the model to the data, and therefore these
parameters are hard to estimate reliably. Once these ill-conditioned parameter axes
are identified, one can fix the associated parameters at prior values throughout the
estimation process, thus improving the conditioning of the resultant reduced-order
estimation problem. Fixing values of the ill-conditioned parameters has the effect of
introducing some bias error into the model, but by removing these parameters from
the estimated set, we improve the reliability with which the remaining parameters
are estimated.

Subset selection is most powerful if the eigenvalue spectrum of the Hessian ma-
trix exhibits a large gap between ρ large eigenvalues and m−ρ small ones. Such a
situation suggests that the Hessian matrix has numerical rank ρ and that m−ρ ap-
propriately chosen parameters should be fixed. Equations 4 and 5 then only involve
reduced-order Hessian and Jacobian matrices, which we will denote by Hρ and Jρ ,
respectively.

The following subset selection algorithm for non-linear least squares estimation
is based on the work of Vélez-Reyes [45] and is essentially an extension of a subset
selection algorithm for the linear least squares problem [13, 14].

1. Given an initial estimate θ 0, compute the Hessian H(θ 0) and its eigenvalue de-
composition H = VΛV>.

2. Determine ρ and an ordering of the eigenvalues in the decomposition such that
the first ρ eigenvalues of H are much larger than the remaining m−ρ .

3. Partition the matrix of eigenvectors according to V = [Vρ Vm−ρ ].
4. Determine a permutation matrix P by constructing a QR decomposition with

column pivoting [14, p. 248] for V>ρ , i.e. determine P such that

V>ρ ·P = Q ·R

where Q is an orthogonal matrix and the first ρ columns of R form an upper
triangular matrix.

5. Use P to re-order the parameter vector θ according to θ̃ = P>θ .
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6. Make the partition θ̃ = [θ̃>ρ θ̃
>
m−ρ ]>, where θ̃

>
ρ contains the first ρ elements of

θ̃ . Fix θ̃ m−ρ at a prior estimate ˆ̃
θ m−ρ .

7. Compute the new estimate of the parameter vector ˆ̃
θ by solving the reduced-

order minimization problem

ˆ̃
θ = argmin

θ̃

Φ(θ̃) subject to ˆ̃
θ m−ρ = θ̃ m−ρ

The eigenvalue decomposition in the first step is a pre-requisite for the determina-
tion of the numerical rank of H and the subset selection step. The rank determination
in step 2 is based on reasonably sized gaps in the eigenvalue spectrum. Such gaps
might not exist, and in those cases subset selection might only be of limited help
in overcoming ill-coniditoning [13]. Usually several gaps of differing sizes can be
identified and one has to choose between including more parameters and keeping
the condition number of the reduced order Hessian Hρ small. The former choice
usually increases the reduced-order model’s ability to represent experimental data,
while the latter leads to more reliable estimation of the remaining parameters. The
numerical rank estimate tells us how many parameters to include in our analysis.
Step 4, the actual subset selection step, determines which parameters to include.
This information is encoded in the permutation matrix P. Step 5 reorders the pa-
rameter vector θ such that the ρ dominant parameters move to the top of the vector.
Steps 6 and 7 describe the reduced-order estimation step.

We applied the subset selection algorithm outlined above to the problem of es-
timating cardiovascular parameters from the transient hemodynamic response to
standing up detailed in Section 2.

Figure 9 shows the eigenvalue spectrum {λi} of the approximate Hessian matrix
H(θ 0) = J>J. Since the spectrum covers almost eight orders of magnitude, we plot
the eigenvalues on a logarithmic scale. The corresponding condition number of the
full-order Hessian matrix is κ(H) = 3.4 ·107, indicating substantial ill-conditioning
if attempts were made to solve the full-order estimation problem. Figure 9 also
shows the gap structure {λi/λi+1} of the eigenvalue spectrum. It is evident from
the two figures that no single dominantly large gap exists that would suggest an
obvious choice for the rank estimate. However, the gap structure does show three
breakpoints that are sufficiently removed from the remainder of the spectrum. They
correspond to the rank estimates ρ1 = 3, ρ2 = 1, and ρ3 = 4, where ρ1 corresponds
to the largest gap, ρ2 to the second largerst and so on.

We compared the rank estimate ρ = 4 against an arbitrarily chosen one, ρ = 15,
to demonstrate the effect of ill-conditioning on the parameter estimates. Table 1
shows the results of this exploration and demonstrates that including more parame-
ters in the estimation scheme than warranted by the subset selection criterion yields
unreliable estimates even for those parameters that by themselves might be iden-
tifiable. A more detailed discussion of the methodology, evaluation strategy, and
results of subset selection in the context of cardiovascular parameter estimation can
be found in [17].
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Fig. 9 Eigenvalue spectrum of the Hessian matrix (left) and gaps λi/λi+1 of the eigenvalue spec-
trum.

5 The Case for Structured Model-order Reduction

When developing physiological models, researchers commonly do not strive to
build a minimal model capable of representing particular experimental observations.
Rather, they usually represent all components of the physiological system that may
contribute significantly to particular observations. Consequently, the resultant mod-
els can become quite sizable, representing physiology at a variety of time and space
scales. Such models typically embody or reflect the underlying physical or mecha-
nistic understanding we have about the system, as well as structural features such as
the delineation of subsystems and their interconnections. Often, these models have
been built up over decades of study and reflect the cummulative knowledge and
contributions of many researchers in a field.

However, increasing the complexity of a model can significantly work against
its usefulness in many respects, as simulation times are increased and it becomes
difficult to understand in a fundamental way what parts of a model are actually
being exercised and how. In addition, a significant feature of such models is the

Table 1 Mean relative errors of estimated parameters with respect to their true values. Numeric
values are given in %. Parameters are: Setpoint of the arterial blood pressure (1), right-ventricular
end-diastolic elastance (2), total blood volume (3), and nominal heart rate (4).

Parameter Index

κ(Hρ ) 1 2 3 4

ρ = 4 55.3 (-0.9±0.3) (0.1±0.2) (0.4±0.1) (0.7±0.4)

ρ = 15 8.0 ·104 (-21.1±2.5) (4.6±4.2) (-5.6±1.2) (32.1±6.8)
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uncertainty associated with many or most of the parameters of the model. The data
that one can collect from the associated physiological system is rarely rich enough
to allow reliable identification of all model parameters (see Section 4), yet there are
good reasons not to be satisfied with direct black-box identification of a reduced-
order model [1]. The challenge then is to develop meaningful reduced-order models
that reflect the detailed, hard-won knowledge one has about the system, while being
better suited to identification, simulation, and control design than the original large
model. Currently, no such tools for structured or gray-box model-order reduction
exist, though the need to develop such tools is quite obvious: only if we are able
to identify those components of a model that contribute significantly to a particular
simulated response do we actually increase our understanding of the system under
study, and only if we are able to quantify the effects of parametric uncertainties can
we assess the model’s range of validity and can we suggest experiments that might
help reduce prediction uncertainties.

6 Conclusions

Physiology has always been an integrative and quantitative science in which math-
ematical analyses and modeling featured very prominently alongside experimenta-
tion to illuminate experimental results and to test our understanding of physiology
in an exact, quantitative framework. The need to continue in this tradition is ever
more urgent as the recent explosion in biological, biomedical, and clinical data ne-
cessitates novel approaches to the integration, analysis, and interpretation of such
overwhelmingly copious amounts of data. In this introductory chapter, we have
touched upon some key themes of mathematical modeling, namely simulation, ex-
ploration of hypotheses, parameter estimation and model-order reduction. Many of
the contributions in this volume elaborate on one or the other of these themes in
their application of modeling in physiology or biology.
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