
Global Optimization Approaches for Parameter Tuning in Biomedical Signal
Processing: A Focus of Multi-scale Entropy

Mohammad Ghassemi1, Li-wei H. Lehman1, Jasper Snoek2 and Shamim Nemati2
1 Massachusetts Institute of Technology, Cambridge, MA

2 Harvard School of Engineering and Applied Sciences, Cambridge, MA

Abstract

Many algorithms used for the analysis of physiologi-
cal signals include hyper-parameters that must be selected
by the investigator. The ultimate choice of these param-
eter values can have a dramatic impact on the perfor-
mance of the approach. Addressing this issue often re-
quires investigators to manually tune parameters for their
particular dataset. In this study, we illustrate the impor-
tance of global optimization techniques for the automated
determination of parameter values in the multi-scale en-
tropy (MSE) algorithm. Importantly, we demonstrate that
global optimization techniques provide an effective, and
automated framework for tuning parameters of such algo-
rithms, and easily improve upon the default settings se-
lected by experts.

1. Introduction

The increasing use of very large datasets, and the ad-
vent of effective, scalable methods for analyzing them,
have stimulated progress in many fields of research. In
bio-medical research, this trend has been most apparent in
genomics, but large-scale data resources are also beginning
to have significant impact in basic and applied research in
physiology and medicine, in which signal processing plays
a key role. PhysioNet is one example of a research re-
source for physiological signal processing [1]. Despite the
rich volumes of high resolution waveform and time series
data available in PhysioNet archives, countless research
papers based on PhysioNet’s data resources utilize only
sparse, low-resolution subsets of available high-resolution
vital signs and laboratory measurements(e.g., minimum,
maximum, or average hear rate and blood pressure over
a 24 hours period). This approach may be sub-optimal
however as recent studies recommend that therapeutic in-
terventions should not only aim at maintaining patient vi-
tals within an acceptable static range, but also direct a pa-
tients trajectory towards healthy dynamical regimes with
enhanced variability [2, 3].

As of last year, the two most frequently used techniques

for quantifying time series variability in the physiolog-
ical signal processing community were sample entropy
(SE) and approximate entropy (AE) [4]. Multi-scale en-
tropy (MSE) has been described as a more robust alter-
native for quantifying the dynamical activity of a physio-
logical time-series. MSE may be understood as the set of
sample entropy values for a signal which is averaged (or
coarse-grained) over various increasing segment lengths.
As demonstrated by Costa et al. [5], MSE is a more de-
scriptive index of various types of signal variability than
the SE of the original signal alone. To truly take advan-
tage of MSE, however, requires the investigator to specify
several parameter values, prior to analysis. These param-
eters include features which carry over from SE, such as
the length of the sequences to be compared (commonly
denoted m), a similarity threshold (commonly denoted r)
as well as some MSE specific features such as the maxi-
mum time scale for which the SE is computed and the step
size in the scale [5]. Existing techniques for principled
selection of SE and MSE parameters include brute force
and Monte Carlo techniques [6] among others, but man-
ual tuning, or a simple reliance on default values, is also
commonly employed. We, like others in the community,
believe that MSE and SE should not be a function of un-
principled parameter selection [4]. To address this issue,
we propose use of recent advances in global optimization
techniques for the identification of MSE parameters. In
this paper, we directly compare parameters selected by the
Multi-start Scatter-Search [7], Genetic Algorithm and the
Bayesian Optimization [8] approaches to global optimiza-
tion against the default values for MSE on an intensive care
unit (ICU) sepsis dataset.

2. Materials and methods

This study utilized retrospective data from a sub-
set of ICU patients from the publicly available Multi-
parameter Intelligent Monitoring in Intensive Care
(MIMIC) database [9] that matched the definition of sep-
sis and severe sepsis as previously described by Mayaud et
al. [10]. We selected N = 118 patients who had complete
ECG waveforms for their first 24 hours in the ICU. We also
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collected the Acute Physiology and Chronic Health Eval-
uation IV (APACHE) scores for the cohort. The average
heart rate (HR) time series over 10 second sliding windows
(with no overlap) were extracted using peak detection with
weighted averaging based on the quality of the individual
heart beat waveform falling within each window.

Classification via transductive SVM: The MIMIC ICU
population constitute patients from several care units.
Moreover, patients are subjected to a variety of interven-
tions (ventilators, medications, etc.). This inherent hetero-
geneity raises an important question: how can one transfer
knowledge about a given patient cohort to an unseen newly
admitted patient? In this work, we assume that the pa-
tient population is made of multiple distinct clusters, and a
new patient may belong to any one of the existing clusters
with different probabilities. To facilitate patient classifica-
tion under these assumptions, we use a transductive SVM
(TSVM) approach to simultaneously discover patient clus-
ters and classify new patients. First, each patient is repre-
sented by a vector of time series features (e.g., MSE coef-
ficients). Next, using an appropriate similarity kernel (e.g.,
the radial basis function kernel) we construct a similarity
matrix among the time series, and perform spectral cluster-
ing with automated cluster number determination via sil-
houette values [11]. Finally, a separate SVM classifier is fit
to each cluster. Given a collection of SVM classifiers and
the associated time series features (or support vectors) and
a new patient time series, we proceed by estimating a prob-
ability that the patient feature vector belongs to any one of
the SVM models. This is accomplished by calculating its
average similarity to the time series within that model, and
normalizing the resulting similarity vector. The final clas-
sification of the new patient is a convex combination of the
outputs of the individual SVM classifiers, where weights
are given by the normalized similarities.

Statistical analysis: The data was randomly partitioned
10 times into testing (20%), validation (20%) and training
(60%) sets. For each data partition, we used MSE values as
the primary feature vector. Each training set was utilized
to identify the coefficients for the TSVM classifier which
performed optimally (as measured by AUC) on the cor-
responding validation set. The model was then evaluated
on an unseen testing set. We report the statistical proper-
ties of these AUC measures across the 10 partitions. As
a performance baseline, we report AUC measures which
result from selecting the default parameter values reported
on PhysioNet. These were then compared to the AUC re-
sulting from parameter selection via global optimization.
Additionally, we compared the performance of MSE ver-
sus the time series mean and standard deviation by training
the same TSVM model using these variables as the feature
of interest. Lastly, we compared the performance of our
trained models to a TSVM classifier utilizing the APACHE

score feature provided to our cohort.

Optimization: MSE requires the specification of a maxi-
mum scale factor (default: 20), a difference between con-
secutive scale factors (default: 1), the length of sequences
to be compared (default: 2) and a similarity threshold
(default: 0.15). We determined the optimal setting of
these parameters using the global optimization techniques
described below. Global optimization algorithms typi-
cally require the explicit specification of bounds on pos-
sible hyper-parameter values. These bounds were selected
as follows: Max Scale(1-40), Scale Increase(1-4) r(0.05-
0.5), m(1-4). We performed global optimization on the
MSE parameters using the Multi-start Scatter search algo-
rithm, Genetic Algorithm, and Bayesian optimization ap-
proaches. We briefly describe these methods here but en-
courage the readers to refer to the original papers describ-
ing these algorithms in more detail.

Bayesian optimization is a methodology for global op-
timization that relies on building and querying a relatively
inexpensive probabilistic surrogate of the more expensive
objective function. In general, the surrogate is a Gaussian
process, which when combined with observations yields
a convenient posterior distribution over functions. In-
tuitively, the optimization routine proceeds by exploring
through seeking regions of high posterior uncertainty in
the surrogate and exploiting by evaluating regions with a
promising expected value. At each iteration the routine
proposes a set of hyperparameters that maximizes the ex-
pected improvement over the best result seen. An experi-
ment is run with these hyperparameters and then the surro-
gate model is updated with the result. This process contin-
ues over several iterations until some threshold is reached,
or a maximal number of iterations surpassed. We followed
the implementation of [8] in our empirical analysis.

Genetic algorithms are an established method for global
optimization that imitate the process of natural selection.
In this approach, an initial collection of hyper-parameters
are selected, and evaluated according to the objective func-
tion. The performance of each entity regulates it’s prop-
agation into subsequent generations. Genetic algorithms
employ heavy use of randomization and have several pa-
rameters that may be tuned. The genetic algorithm was pa-
rameterized to allow for an infinite number of generations
with a starting population size of 100 and a termination
condition of run-time exceeding 30 minuets. Starting lo-
cation for parameters were drawn from a uniform distribu-
tion over the hyper-cube defining our parameter space. All
other optimization options were chosen following the de-
faults provided by Matlab, and may be found online [12].

Like the GA approach, the Scatter Search (ScS) al-
gorithm iteratively establishes a set of possible solutions
starting from a random set of starting location. Unlike
GA, ScS use a deterministic process to identify the mem-
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bers of the next generation, such as gradient descent.
Like the genetic algorithm, The Muti-start algorithm was
parametrized to allow for an infinite number of iterations
and a termination condition of run-time exceeding 30 min-
uets. Local minima were identified using constrained non-
linear minimization and the interior point algorithm [12].
All other optimization options were chosen following the
defaults provided by Matlab, and may be found online
[12].

3. Results

Table 1 provides a comparison of the APACHE and
time-series mean and standard deviation features for the
prediction of patient outcome. Table 2 provides a compar-
ison of our method’s predictive performance using MSE
with default parameter values compared to parameters
trained by various global optimization methods. Of the at-
tempted optimization methods, Bayesian optimization pro-
vided the best selection of parameter values and resulting
predictive performance.

Table 1. A comparison of the APACHE and time-series
mean and standard deviation features for the prediction
of patient outcome. Within each cell, upper values repre-
sent the 50th percentile across folds, with lower values (in
parenthesis) representing the the 25th and 75th percentiles.

Time Series
Mean + Std

APACHE
IV

AUC
(Training)

0.56
(0.52 - 0.56)

0.77
(0.75 - 0.79)

AUC
(Testing)

0.54
(0.45 - 0.60)

0.68
(0.55 - 0.77)

In Figure 1 we illustrate the selected parameter values,
and corresponding AUC of each global optimization ap-
proach across the ten testing folds. We highlight that the
variability of the inferred parameter values is not constant
across methods. For all but the m parameter, the estimates
provided by Bayesian optimization are the most tightly
clustered. For the r and Max Scale parameters, the dif-
ference in estimate variability is most apparent.

4. Discussions and conclusion

There are several important points which are highlighted
by our results. Firstly a comparison of Tables 1 and 2
demonstrates the importance of physiological dynamics
(as measured by MSE) for the prediction of mortality in
the sepsis cohort. When adequately tuned via optimiza-
tion, we see that the MSE features facilitate classification
performance which exceeds that provided by the APACHE
or time-series mean and standard deviation features. This
result is in agreement with the existing literature which

Table 2. A comparison of predictive performance using
MSE with default parameter values compared to parame-
ters trained by various global optimization methods. For
each MSE parameter we report their cross-fold mean and
standard deviation (with standard deviation in parenthe-
sis).For the reported AUC, we report the 50th percentile
in the top half of the cell and the 25th and 75th percentiles
in the lower half of the cell.

MSE
(Defaults)

MSE
(Bayesian)

MSE
(Genetic)

MSE
(Multi-Start)

Max
Scale 20 17.62(8.68) 23.54(14.34) 19.03(12.57)

Scale
Increase 1 2.59(0.93) 2.56(1.12) 2.35(0.87)

r 0.15 0.11( 0.07) 0.18(0.15) 0.18(0.1285)
m 2 2.58(0.85) 2.07(0.70) 2.53(0.87)
AUC
(Training)

0.77
(0.73- 0.78)

0.77
(0.69 - 0.79)

0.77
(0.67 - 0.84)

0.73
(0.69 - 0.76)

AUC
(Testing)

0.66
(0.60 - 0.72)

0.72
(0.63 - 0.78)

0.67
(0.44 - 0.78)

0.69
(0.53 - 0.72)

shows that MSE based HR complexity may have a prog-
nostic value beyond time series mean and variance. Im-
portantly, the performance of MSE above the widely em-
ployed APACHE scores highlights the need for severity
of illness metrics which include measures of physiologi-
cal dynamics.

For MSE to deliver meaningful entropy values across
scales, high resolution waveforms are necessary and this
often stands at odds with many conventional forms of clin-
ical data collection, which sample at resolutions of minuets
or higher. Hence, these results also motivate the value of
high resolution data for prognostication, and patient moni-
toring in critical care settings.

The results in Table 2, clearly illustrate the beneficial
effects of principled parameter selection on model per-
formance. In general, global optimization approaches
are best motivated for objective functions which are both
costly to evaluate and whose performance is sensitive to
parametrization. MSE is just one example of a method
which requires such parametrization. Importantly, related
work has called into question the setting of MSE parameter
values, and eluded to the potential utility of an optimiza-
tion approach, which we have now demonstrated. Other
commonly employed methods in biomedical signal pro-
cessing may also gain from such an approach, whether it
be selecting the number of Gaussian mixture components
used to model a density function, the number of layers in
a neural network, or the number of assumed source signals
in an Independent Component Analysis.

It is important to note that while all three optimiza-
tion approaches yielded parameter sets which resulted in
50th percentile AUC values above those provided by the
defaults, Bayesian optimization was the clear victor, and
the only method which facilitated MSE to outperform the
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Figure 1. Selected parameter values, and corresponding
AUC of each global optimization approach, across the ten
testing folds.

APACHE score. This result is in line with recent litera-
ture, which has demonstrated the superiority of Bayesian
optimization on several benchmark datasets [8].

The variation in estimated parameters values across our
data folds shown in Fig. 1, illustrates the heterogeneous
nature of ICU patients with homogeneous disease profiles.
If there was a single optimal set of parameters for the entire
cohort we would expect to see higher average AUC val-
ues near specific parameter values. Instead, Fig. 1 shows
great variance in model AUC, across a range of parameter
selections. Importantly, we see that BO was often more
immune to estimate variability than the other approaches.
The max scale and r values inferred by Bayesian optimiza-
tion were far more tightly clustered than those provided by
other methods. This fact, coupled with its enhanced perfor-
mance may indicate that patient heterogeneity manifests
it’s effect in some features of MSE more so than others.

The importance of this approach extends beyond the im-
mediate scope of this paper. Detection of similar tempo-
ral patterns in complex physiological signals not only en-
ables demarcation of important clinical events but can also
elucidate hidden dynamical structures that may be sugges-
tive of disease processes. Some specific examples where
this may also be useful include real-time detection of car-
diac arrhythmia, sleep staging or detection of seizure on-
set. In all these cases, being able to identify a cohort of
patients who exhibit similar physiological dynamics could
be useful in prognosis and inform treatment strategies. Ul-
timately, we are hopeful that these results will encourage
others in the biomedical signal processing community to
employ global optimization techniques when performing
parameter selection and facilitate more robust results.
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