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Abstract

The Multiparameter Intelligent Monitoring in Intensive

Care (MIMIC-II) Database includes waveforms and de-

rived parameters from bedside monitors, clinical data from

an ICU information system, and data from other hospital

laboratories and archives, for thousands of patients. These

data come from devices under separate domains that often

do not retain detailed information regarding relationships

between parameters. We developed software for matching

data fragments with incomplete and sometimes incorrect

identifiers. We found that names, medical record numbers,

waveform times and durations, and ICU admission and

discharge records were most helpful when available; how-

ever, physiological data can also be used in some circum-

stances. Rule-based normalization and text edit-distance

metrics are used in addition to a visual verification tool

for patients whose records cannot be assembled automati-

cally. Thus, a majority of the available waveform record-

ings are matched to patients in the clinical database.

1. Introduction

The Multiparameter Intelligent Monitoring in Intensive

Care (MIMIC-II) Database contains both comprehensive

clinical data, stored as a relational database, and bedside

monitor-derived waveform data from thousands of Inten-

sive Care Unit (ICU) patients.[1] Both the clinical data and

the waveform data require significant curation before they

can be made available for biomedical research; here, we

focus on curation of the waveform data.

The patient-waveform data are originally recorded on

commercially produced devices, the purpose of which is

simply transmission to and display at nurses’ stations,

within the hospital, in real time. As archival collection was

not intended for these devices, spurious and inconsistent

data are common; especially, the lack of temporal mark-

ers makes retrospective analysis a challenge. Computa-

tionally intensive curation of the raw data is performed of-

fline, before the waveforms are included into the MIMIC-II

database.

Additionally, as the clinical data and the waveform data

come from separate computer systems, under administra-

tively distinct domains at the same hospital, a definitive

relationship between the waveform data and their respec-

tive patients is not provided. We describe our process for

rebuilding that relationship. As much as possible, we use

automatic procedures to generate matches between wave-

forms and patients; however, we have developed GUI-

based software tools to assist in manual matching, and

in verification of automatic matches. While studies can

be done using the waveform data alone, when properly

matched to patients in the clinical database (DB), signif-

icant research opportunities appear ([2], [3], [4]).

2. Data collection

The waveform data consist of ECG, ABP, and PAP sig-

nals sampled at 125 Hz with 10- or 12-bit resolution, vary-

ing in length from minutes to hours, or days. In addition to

these raw signals, there are low-resolution (1 Hz) “trend”

signals that are calculated from these. The types of trends

include heart rate, respiratory rate, non-invasive BP, CVP,

PAWP, cardiac output, and both PAP and ABP. Finally, the

clinical DB includes once-per-hour recordings of the same

trend types; these data are entered by nurses monitoring the

waveforms in real time, but may be (and often are) modi-

fied by them.

2.1. Data-collection generations

The waveform data come from two generations of col-

lection. In the first, up to four waveform channels are col-

lected simultaneously from each patient. These waveform

data are mostly well behaved: most are time-aligned with

their respective hourly clinical-DB recordings. Moreover,

the large majority of waveforms are tagged with medical

record numbers (MRNs); however, those that are not have

no other direct patient-identifying information.

The second generation contains up to eight simultane-

ous waveform channels per patient, but these data are less

well behaved: they require significant curation in order to

be useful as complete, continuous waveforms; their time

stamps are unreliable, and are often significantly time-
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shifted (by up to several hours) compared to the hourly

clinical-DB recordings; and just over half are tagged with

MRNs. In this generation, though, the majority of wave-

forms are tagged with patient names, which are very im-

portant as patient identifiers.

2.2. Waveform recording

Patients in the ICU are attached with multiple leads to

bedside monitors, which have network connections to a

centralized database server, which feeds the waveform

data in real time to the nurses’ stations. The archiving

agent is a relatively low-powered PC attached directly to

the database server, acquiring batches of waveform data in

soft-real time.1

Along with the waveform data, export logs containing

human- and machine-readable metadata are produced. The

export logs mark each waveform with a unique Case ID

and – depending on the generation – patient names, MRNs,

and ICU names.

2.3. Waveform curation

The archiving agent provides two files for each pa-

tient waveform: the “raw” file, which contains the high-

resolution waveforms and 1 Hz trends, and the “flat” file,

which contains a single, theoretically exact replica of one

waveform from the raw file. The raw file contains the rele-

vant data, but does not contain any reliable time stamps:

the archiving agent receives the raw file in contiguous

chunks, and it only stamps it with the time of its arrival.

The flat file, in contrast, contains generally accurate time

stamps from the bedside monitor itself.

Processing occurs in several steps. After conversion

into WDFB format [5], the flat-file reference waveform –

though it is typically scaled and clipped – should match

one of the signals in the raw file. Since no reliable marker

of which raw-file signal the flat-file signal matches to is

available, a brute-force procedure searches the latter for lo-

cations where a raw-file signal’s chunk agrees with it. The

first significant change in the raw chunk – where the signal

goes “up” or “down” an appreciable amount – is used to

latch onto the flat-file signal; if the rest of the chunk agrees,

with the same computed scale factor for the flat-file sig-

nal, then that chunk can be properly time-aligned. Even a

very permissive matching, though, does not always work:

guesses about the alignment, based on the alignment of

nearby segments, must sometimes be made. The resulting

WFDB record consists of the properly time-aligned raw

chunks.

1The archiving agent was not part of the original commercial design.

3. Matching fragments

Next, the waveforms are matched against their respec-

tive patients in the clinical DB. To perform this matching,

several identifiers – including the waveforms’ export-log

metadata, physiological information from the waveform

trends, and patient information from the clinical DB – are

used.

3.1. Physiological matching

The first generation of waveforms consists of 2957

records with unique Case IDs. Of these, 80% are tagged

with MRNs: these have been directly matched against pa-

tient records in the clinical DB. The remaining 607 have

undergone a “bottom-up” matching process: a short list

of potential patient matches is produced for each Case ID,

and then a comparison of physiological data is presented

to a human user to aid in selecting the best among these

matches.

For a given Case ID, the list of potential matches is cre-

ated as follows: all patients are culled except for those with

an ICU stay whose time interval overlaps that of the Case

ID’s waveform; and those for which for which a majority

of trend types “matched” those available for the patient in

the clinical DB (i.e. either both were available, or both

not).2 Culling by both of these identifiers produced an av-

erage potential-match list length of forty patients per Case

ID.

Next, the 1 Hz waveform trends were compared directly

to their corresponding potential hourly trend data in the

clinical DB by (a) applying a 10-minute median filter to

the waveform trend, (b) computing the absolute values of

the differences between this filtered waveform and the clin-

ical trend data, and (c) taking the median of those differ-

ences. For each such median, a confidence rating was cal-

culated by comparing it to similarly computed medians for

a fixed set of 100 previously, randomly selected, and ver-

ified matches: the number of these 100 medians that are

larger than a potential match’s median – for each trend type

– gives the per-trend confidence rating.

A final confidence rating takes into account all of the

types of trends available, along with the number of data

points used for comparison, as well as an importance

weight based on the relative perceived reliability of the

trend types. For example, as respiratory-rate trends tend to

be noisy, they are given less weight than heart rate trends,

which are calculated directly from ECG signals. The full

list of importance weights is shown in table 1.

The formula for the overall confidence rating is:

Roverall =

∑n

i=1
Rtrend,i ·Wtrendi

· Ptrendi∑n

i=1
Wtrend,i · Ptrendi

2Systolic and diastolic ABP were not used here, because the informa-
tion for their availability was not present at the time.

794



Table 1. Importance Weights for Trend Types

Trend Type Importance Weight

Heart Rate 1.5

Resp. Rate 0.5

NBP sys./dias./mean 0.33 each

PAP sys./dias./mean 0.5 each

CVP 0.5

ABP sys./dias./mean 0.5 each

PAWP 1

CO 1

given the per-type confidence rating Rtrend,i for each

trend i, the importance weight Wtrend,i, and the number

of waveform-trend points used, Ptrend,i.

Given the confidence rating-ranked list of potential

matches, a human user was able to verify which, if any,

match is valid for each previously unmatched Case ID.

Furthermore, The GUI-based tool used to enable this was

also adapted to verify previous matches (based on MRN)

that had unusually low overall confidence ratings. The re-

sults are given in section 4.

3.2. Matching with discrete identifiers

Physiological matching has so far been found not to be

feasible on the second generation. This may largely be a

result of the fact that waveform times from this generation

are not well synchronized with the hourly trend data in the

clinical DB.3 Instead, direct matches are attempted using

patient names and MRNs, with confirmation provided by

agreement on ICU identity and time-interval overlap be-

tween the waveforms and the ICU stays.

3.3. Matching with MRNs

In the data collected for MIMIC-II, when MRNs are

available, they may encounter two problems: a typo pro-

duces a well formed, but incorrect MRN for a patient; or

the MRN is not well formed (i.e. not a seven-digit num-

ber).

Damerau-Levenshtein distance[6] is used to compare

two MRNs. This is an example of an “edit distance” met-

ric, which is the minimum number of “edits” performed

on one string to transform it into the other. For Damerau-

Levenshtein distance, an “edit” is either a character inser-

tion, a character deletion, a change of a single character

in place, or a swapping of two different adjacent charac-

ters. A simpler edit-distance metric is Levenshtein dis-

tance, which incorporates only the first three of these oper-

3More advanced techniques, such as using cross-correlation to syn-
chronize between the two sets of data, have been considered but not yet
applied.

ations.[7] Damerau-Levenshtein distance can be more use-

ful than plain Levenshtein distance when trying to account

for human-originating typos, because it treats a character

swap on the same level as other typos; thus, we use it to

compare MRNs.

3.4. Matching with names

Unlike an MRN, one person’s name can be written in

numerous different ways, all of which may be valid, but

some of which are more likely to be encountered than oth-

ers. Similarly, one written name may legitimately identify

two (or more) different people.

Regular expression-based normalization is attempted, to

extract a first name, middle name(s), last name, and suf-

fix.[8] This attempted normalization takes account of the

usual patterns observed, separately, in the clinical DB, and

in the waveforms’ export logs. Ambiguity may still occur:

e.g., if only one name is available, it may be a first or last

name; first or last names be written out of order; or middle

names may be falsely distinguished from parts of first or

last names.

After normalization, a set of three matching functions

of the form namesi : (Name,Name) → Boolean,

along a scale from “strong” to “weak” – returning true

for names believed to match to the same patient – are used.

Stronger functions require more similarity between names

to return true; weaker functions are more lax. Techniques

employed include: swapping or rotating first, middle, and

last names, before computing Levenshtein distance over

the concatenation; expanding first initials to match full

names; matching a single name against either of the other

names; and allowing larger Levenshtein distances between

first names than last names. The three functions, namesw
(weak), namesm (medium), and namess (strong) use

combinations of such techniques that are relatively specific

to the export logs and clinical data in question.

3.5. Matching with multiple identifiers

Full matching is performed by exploring the space of

MRN and name identifiers in a piecewise fashion, us-

ing time-interval overlaps to confirm or reject potential

matches. The entire process is performed inside of a re-

lational database.

The procedure for Case IDs with MRNs is shown in

figure 1. As with the three name-matching functions de-

scribed, we have two MRN-matching functions: MRNse
(matching two MRNs exactly) and MRNss (matching

two MRNs strongly); as well as three time-interval match-

ing functions, with different overlap constraints: timesw
(weak), timesm (medium), and timess (strong); and one

ICU-identity matching function: ICUse (matching two

ICU unit names exactly). In this figure, a rectangular box
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