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ABSTRACT

Extensions to a previously published nonlinear model for generating realistic artificial electrocardiograms to
include blood pressure and respiratory signals are presented. The model accurately reproduces many of the
important clinical qualities of these signals such as QT dispersion, realistic beat to beat variability in timing and
morphology and pulse transit time.

The advantage of this artificial model is that the signal is completely known (and therefore its clinical
descriptors can be specified exactly) and contains no noise. Artifact and noise can therefore be added in a
quantifiable and controlled manner in order to test relevant biomedical signal processing algorithms. Application
examples using Independent Component Analysis to remove artifacts are presented.

Keywords: Electrocardiogram, blood pressure, artificial signal, independent component analysis, noise, mea-
surement error, EKG, respiration, nonlinear model, noise removal

1. INTRODUCTION

In an earlier publication1 the authors demonstrated how a dynamical model based on three coupled ordinary
differential equations is capable of generating realistic synthetic electrocardiograms (ECGs). Open source code
for this model is freely available from Physionet2 in C, Matlab and Java programming languages. This article
demonstrates how the same model can be used to generate realistic blood pressure (BP) and respiration signals
with realistic inter-signal coupling between the respiration, BP and ECG time series.

The time-varying surface ECG reflects the ionic current flow which causes the cardiac fibers to contract
and subsequently relax. A single normal (sinus) cycle of the ECG represents the successive atrial depolariza-
tion/repolarization and ventricular depolarization/repolarization which occurs with every heart beat. These can
be approximately associated with the peaks and troughs of the ECG waveform labeled P,Q,R,S and T as shown
in Fig. 1a. The RR-interval is the time between successive R-peaks, the inverse of this time interval gives the
instantaneous heart rate, HRi. The current model exhibits realistic changes in RR-intervals, R-peak amplitudes
and QT-intervals.

After the R-peak on the ECG there is a short delay, known as the Left Ventricular Ejection Time (LVET),
before the blood volume is pushed out of the left ventricle and into the arterial system. By placing a recording
device in or near the arterial tree (such as a catheter or photoplethysmogrphy device), a pulsatile waveform may
be measured that represents the blood flow over time. Fig. 1b illustrates the salient features of such a waveform.
The four main points that are labeled are the systolic BP at the onset of the waveform (Q), the diastolic BP at
the peak of the waveform, (R), the cusp of the dialstoic reflected wave∗ (S), and the waveform offset (T ). The
Pulse Transmission Time (PTT) is taken to be the time difference between the ECG R-peak and the onset of
the BP waveform; tECG

R − tBP
Q .
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∗DRW - sometimes erroneously mistaken for the dichrotic notch
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Figure 1. Upper plot (a) - Morphology of a mean PQRST-complex of an ECG recorded from a normal human. Lower
plot (b) - Real BP waveform - from Physionet mghdb4; subject mgh0007.

Table 1. Parameters of the ECG model given by (1)

Index (i) PECG QECG RECG SECG TECG

Time (secs) -0.2 -0.05 0 0.05 0.3
θi (radians) − 1

3π − 1
12π 0 1

12π 1
2π

ai 1.2 -5.0 30.0 -7.5 0.75
bi 0.25 0.1 0.1 0.1 0.4

Extracting useful clinical information from the real (noisy) ECG and BP signals requires reliable signal
processing techniques These include peak detection pulse and QT-interval detection and the derivation of heart
rate and respiration rate from these signals.3 For example, the variability of a series of peak-to-peak waveform
intervals (known as a RR tachogram on the ECG) is understood to reveal important information about the
physiological state of a subject.3 At present, new biomedical signal processing algorithms are usually evaluated
by applying them to signals in a large database such as the Physionet database.4 While this gives the operator
an indication of the accuracy of a given algorithm when applied to real data, it is difficult to infer how the
performance would vary in different clinical settings with a range of noise levels and sampling frequencies.
Having access to realistic artificial biomedical signals may facilitate this evaluation.

This paper presents a method for augmenting the existing ECG model to generate a multiparameter syn-
thetic biomedical signal generator capable of generating realistic ECG, BP and respiration with their associated
couplings. The aim of this model is to provide standard realistic biomedical signals with known characteristics,
which can be generated with specific statistics such as the mean and standard deviation of the heart rate and
frequency-domain characteristics of heart rate variability (HRV),3 and at different sampling frequencies with
different noise levels. This may enable clinicians to ascertain which biomedical signal processing techniques were
best for a given application. As an illustration, the performance of ICA in removing noise from the ECG and
BP signals is studied.
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Figure 2. A typical trajectory generated by the dynamical model (1) in the three-dimensional space given by (x, y, z).
The dashed line reflects the limit cycle of unit radius while the small circles show the positions of the P,Q,R,S,T events.
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Figure 3. ECG (a), BP (b), and respiratory (c) signals labeled with pulse transmission time (PTT), left ventricular
ejection time (LVET) and important markers (P, Q, R, S, and T). Generated by integrating equation (1) over the
parameters in Tables 1 and 2.

Table 2. Parameters of the BP model for equation (1)

Index (i) PBP QBP RBP SBP TBP

Time (secs) 0.21 0.01 0 0.03 0.22
θi (radians) − 5

12π − 1
36π 0 1

18π 4
9π

ai 0 0 0.45 0.25 0.45
bi 0.25 0.1 0.3 0.5 0.3
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Figure 4. Power spectrum S(f) of the RR-interval process with a LF/HF ratio of σ2
1/σ2

2 = 0.5.

2. METHODS

2.1. The dynamical model

The model generates a trajectory in a three-dimensional state space with co-ordinates (x, y, z). Quasi-periodicity
of the ECG is reflected by the movement of the trajectory around an attracting limit cycle of unit radius in the
(x, y)-plane. Each revolution on this circle corresponds to one RR-interval or heart beat. Inter-beat variation in
the ECG is reproduced using the motion of the trajectory in the z-direction. Distinct points on the ECG, such
as the P,Q,R,S and T are described by events corresponding to negative and positive extrema in the z-direction.
These events are placed at fixed angles around the unit circle given by θP , θQ, θR, θS and θT (see Fig. 2). When
the trajectory approaches one of these events, it is pushed upwards or downwards away from the limit cycle, and
then as it moves away it is pulled back towards the limit cycle.

The dynamical equations of motion are given by a set of three ordinary differential equations

ẋ = αx − ωy,

ẏ = αy + ωx,

ż = −
∑

i∈{P,Q,R,S,T}
ai∆θi exp(−∆θ2

i /2b2
i ) − (z − z0), (1)

where α = 1−
√

x2 + y2, ∆θi = (θ − θi) mod 2π, θ = atan2(y, x) and ω is the angular velocity of the trajectory
as it moves around the limit cycle. Baseline wander is introduced by coupling the baseline value z0 in (1) to the
respiratory frequency f2 using

z0(t) = A sin(2πf2t), (2)

where A = 0.15 mV.

These equations of motion given by (1) were integrated numerically using a fourth order Runge-Kutta method5

with a time step ∆t = 1/fint where fint is the internal sampling frequency and must be an integer multiple of
the output sampling frequency fs. Experiments have shown that if either fs or fint << 512Hz then serious
errors may result.6

Visual analysis of a section of typical ECG from a normal subject was used to suggest suitable times (and
therefore angles θi) and values of ai and bi for the PQRST points. The times and angles are specified relative to
the position of the R-peak and are detailed in Table 1.



A trajectory generated by integrating equation (1) in three-dimensions corresponding to (x, y, z) is illustrated
in Fig. 2. This demonstrates how the positions of the events P,Q,R, S, T act on the trajectory in the z-direction
as it precesses around the unit circle in the (x, y)-plane. The z variable from the three-dimensional system (1)
yields a synthetic ECG with realistic PQRST morphology (Fig. 3a). The similarity between the synthetic ECG
and the real ECG may be seen by comparing Fig. 3a with Fig. 1a. Note that noise has not been added to the
model at this point.

By contrasting the dynamical model (1) with the mechanisms underlying the cardiac cycle, it is obvious that
the time required to complete one lap of the limit cycle is equal to the RR-interval of the synthetic ECG signal.
Variations in the length of the RR-intervals can be incorporated by varying the angular velocity ω.

2.2. Adding best-to-beat variability

Analysis of variations in the instantaneous heart rate time series using the beat-to-beat RR-intervals (the RR
tachogram) is known as Heart Rate Variability (HRV) analysis.3 HRV analysis has been shown to provide an
assessment of cardiovascular disease.7 The heart rate may be increased by slow acting sympathetic activity or
decreased by fast acting parasympathetic (vagal) activity. The balance between the effects of the sympathetic
and parasympathetic systems, the two opposite acting branches of the autonomic nervous system, is referred to
as the sympathovagal balance and is believed to be reflected in the beat-to-beat changes of the cardiac cycle.3

The heart rate is given by the reciprocal of the RR-interval in units of beats per minute. Spectral analysis of
the RR tachogram is typically used to estimate the effect of the sympathetic and parasympathetic modulation
of the RR-intervals. The two main frequency bands of interest are referred to as the Low-Frequency (LF) band
(0.04 to 0.15 Hz) and the High-Frequency (HF) band (0.15 to 0.4 Hz) which are believed to mostly reflect the
subject’s sympathetic and parasympathetic activity.3

Respiratory Sinus Arrhythmia (RSA)8, 9 is the name given to the oscillation in the RR tachogram due to
parasympathetic activity which is synchronous with the respiratory cycle. The RSA oscillation manifests itself
as a peak in the HF band of the spectrum. For example, 15 breaths per minute corresponds to a 4 second
oscillation with a peak in the power spectrum at 0.25 Hz. A second peak is often found in the LF band of the
spectrum at approximately 0.1 Hz. While the cause of this 10 second rhythm is strongly debated, one possible
explanation is that it may be due to baroreflex regulation which creates the so-called Mayer waves in the blood
pressure signal.10 The effects of both RSA and Mayer waves in the power spectrum S(f) of the RR-intervals
are incorporated by generating RR-intervals which have a bimodal power spectrum consisting of the sum of two
Gaussian distributions,

S(f) =
σ2

1√
2πc2

1

exp
(

(f − f1)2

2c2
1

)
+

σ2
2√

2πc2
2

exp
(

(f − f2)2

2c2
2

)
, (3)

with means f1, f2 and standard deviations c1, c2. Power in the LF and HF bands are given by σ2
1 and σ2

2

respectively whereas the variance equals the total area σ2 = σ2
1 + σ2

2 , yielding an LF/HF ratio of σ2
1/σ2

2 . Fig.
4 shows the power spectrum S(f) given by f1 = 0.1, f2 = 0.25, c1 = 0.01, c2 = 0.01 and σ2

1/σ2
2 = 0.5. The

Gaussian frequency distribution is motivated by the typical power spectrum of a real RR tachogram.3

A RR-interval time series T (t) with power spectrum S(f) is generated by taking the inverse Fourier transform
of a sequence of complex numbers with amplitudes

√
S(f) and phases which are randomly distributed between

0 and 2π. By multiplying this time series by an appropriate scaling constant and adding an offset value, the
resulting time series can be given any required mean and standard deviation. The time-dependent angular
velocity ω(t) of motion around the limit cycle is then given by ω(t) = 2π/T (t). In this way the series of RR-
intervals of the resultant synthetic ECG will also have a power spectrum equal to S(f); this will be demonstrated
in the next section.

2.3. Generating the respiratory signal

It can be seen from equation (3) that the second term generates the oscillations in the RR intervals due to
respiration. Therefore the inverse Fourier transform of this second term is used to generate the respiratory
signal, which is them resampled to 10Hz (well above the Nyquist criterion even for hyperventilation). Figure 5b
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Figure 5. ECG (a), respiration (b) with corresponding PSD (c), RR intervals (d) with corresponding PSD (e) and BP
(f) with corresponding PSD derived from peak height oscillations (g). All signals were generated from 1, 3 and 2 using
parameters from Tables 1 and 2.

illustrates an instance of this signal and Figure 5c illustrates its power spectral density (PSD). Note the strong
correspondence between the respiratory PSD peak and the peak in the HF region of the RR-interval PSD.

Investigations of the phase relationship between respiration and the RR interval variation indicate that the
angle is a function of patient activity and physical fitness.11 A definite phase difference is therefore not set and
instead the phase relationship between the respiration and the RR intervals, φr−rr, as a free parameter to be set
by the user. Examples of the respiratory waveform are given in Figures 3c and 5b.

3. EXTENDING THE MODEL FOR BLOOD PRESSURE WAVEFORMS

In order to generate realistic BP waveforms, in isolation from the ECG, it is simply a matter of adjusting the
θi, ai and bi until a realistic waveform results. Table 2 presents an example of such a set of parameters, which
are used throughout this paper. Note that aP and aQ have been set to zero to push the z-component towards
the baseline between beats. θQ therefore occurs at the foot of the BP upstroke, the accepted fiducial marker for
the pulsatile BP waveform. Figure 3b illustrates the morphology that results from these parameters. Note the
salient waveform features; the rise onset, the crest of the largest of the two peaks of each waveform, the cusp
between the two peaks (the DRW) and the crest of the second, smaller peak. Each of these are denoted Q, R,
S, T respectively in the model and correspond to the analogous extrema θECG

i in the ECG model.

The beat to beat variations in timing and shape of the pulsatile BP waveform therefore result from the
changes in angular frequency in the (x, y) plane (driven by the RR interval time series) in the same manner
as for the ECG. In particular, a lower heart rate (higher RR interval) leads to a broadening wave, which is
associated with a longer left ventricular ejection time (LVET),12 the time between the opening and the closing
of the aortic valve. It should be noted that the pre-ejection period, the time during which the left ventricle
generates enough force to eject the blood (measured from the onset of ventricular depolarization to the opening
of the aortic valve) is often difficult to measure and has therefore not been incorporated into the model.

3.1. BP-ECG relationships

The time interval between the ejection of blood from the heart (roughly corresponding to the peak of the R-wave
on the ECG) to the onset of the pulsatile BP waveform is known as the pulse transmission time (PTT) and is
equal to 60/HRi(θBP

Q −θECG
R ) seconds in the model. Figure 3 illustrates this interval. PTT is inversely related to



the pulse wave velocity down the artery which is known to be influenced by the arterial compliance (often related
to age), BP and HR.13, 14 The model does not consider the effect of arterial compliance since the intention is not
to model the interaction of the electrophysiology and hemodynamics of the cardiovascular system, but rather to
provide a realistic waveform generator to assess signal processing techniques. However, changes in PTT and BP
as a function of heart rate or RR interval are incorporated.

Drinnan et al.14 have demonstrated that there is a strong correlation (C=0.7) between PTT and RR interval.
The θBP

i is therefore pre-multiplied by a factor proportional to 1/HRmean, causing a decreasing delay between
the θECG

i and the θBP
i for increasing mean heart rates. It is generally accepted that as BP falls, tension in the

arterial wall falls and the PTT increases; and vice versa.15 The systolic (peak) BP is therefore linearly coupled
to mean heart rate (and hence inversely to the PTT). It should be noted that these changes are not always in
phase with the exact delay depending upon the physiological state.11, 16 For instance, the work of DeBoer10

and more recently Cavalcanti et al.17 indicate that intra-thoracic pressure changes from respiration result in
changes in BP which in turn lead to HR changes. However, Drinnan et al.14 and Zhao et al.18 have observed
that (paced) respiration changes drive RR interval changes which, after two or three beats lead to PTT and BP
changes. Others11, 16 have shown that phase locking can occur with changes in respiration, HR and BP occurring
in phase. This latter (and more simple) option has therefore been adopted. The exact delay is chosen in line
with the measurements of Drinnan et al.14 where PTT changes from 7 to 23 ms equate with RR interval changes
from between 86 to 443 ms.

Chirife et al.19 has show that the LVET is related to the time between the onset of the BP waveform and the
DRW (the points θBP

Q and θBP
S - see figure 3b). The LVET has been shown to be longer for lower HR12 which

manifests naturally in the model since the slowing of the HR (lengthening of the RR interval resulting in a lower
angular velocity, ω, in the (x, y) plane) leads to a lengthening (in time) of the trajectory between the θi .

4. AN APPLICATION: NOISE REDUCTION USING ICA

In order to analyse each single channel of data separately the method of Broomhead and King20 is used, who
introduced singular value decomposition (SVD) in combination with Takens’ theorem21 of time-delay embeddings
(which states that it should be possible to reconstruct the dynamics of a deterministic system). The method
involves projecting each sample yt, which is the observable signal representing the state of the system Y (t), onto
the feature space. In this space each delay vector, Yi, contains a section of time series data containing m samples,
sampled with a delay, or lag, of τs samples between each successive sample. Therefore each delay vector is a
point in the embedding space Rm and represents a window of data, of length m, of the time series. To construct
the embedding matrix Y that represents a discrete trajectory of the ECG data through a certain period of
time, this window is passed over a section of data constructing n successive delay vectors that correspond to the
columns of the embedding matrix that map out this trajectory. Therefore the observed ECG signal, yi = y(iτs)
is transformed into an m × n matrix,

Y =





y1 y1+τs
· · · y1+(n−1)τs

y1+τs
y2+2τs

· · · y1+nτs

...
...

...
y1+(m−1)τs

y2+mτs
· · · y1+(m+n−2)τs



 (4)

The traditional assumption that there exists an orthogonal set of vectors spanning the feature space means that
SVD can be used to calculate the eigenvectors and eigenvalues of the transformation described by the embedding
matrix, Y. Consider the real m × n matrix Y which may be decomposed as follows;

Y = U ∗ S ∗ VT (5)

where S is a diagonal matrix of singular values (the singular spectrum) whose elements are arranged in descending
order of magnitude. The columns of V are the eigenvectors of P = Y ∗ YT and the matrix U is the matrix of
projections of Y onto the eigenvectors of P.22 If a truncated SVD of Y is performed (using the most significant
p eigenvectors, then the SVD cleaned signal is given by Z = UUTYT and first column of the p × n matrix Z is
the noise reduced signal.
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Although SVD noise reduction performs well when the signals to be separated are orthogonal, (such as
Gaussian noise and ECGs), for non-orthogonal signals (such as artifacts on the ECG), more promise has been
shown using the well studied method of independent component analysis (ICA).23–25 Now consider Y to be a
matrix of k observed random vectors, B a k × l mixing matrix and X, the l (assumed) source vectors such that

Y = BX (6)

ICA algorithms attempt to find a separating or de-mixing matrix W such that

X = WY (7)

In practice, iterative methods are used to maximise or minimise a given cost function such as mutual information,
entropy or the kurtosis (the fourth order cumulant), which is given by kurt(y) = E{y4} − 3(E{y2})2 where
E{y} is the expectation of the vector y, a column of Y. The chosen method used in this paper is Cardoso’s
Multidimensional ICA algorithm jadeR,25 which is based upon the joint diagonalization of cumulant matrices,
since it combines the benefits of both PCA and ICA to provide a stable deterministic solution. (ICA suffers
from a scaling and column ordering problem due to the indeterminacy of the solution to scalar multipliers and
column permutations of the mixing matrix).

Most ICA methods assume there are at least as many independent measurement sensors as sources one
wishes to separate (l ≤ k). Following the method of James et al.26 to perform ICA blind source separation with
Cardoso’s jadeR algorithm of the embedding matrix Y, the assumption of one signal and one noise source is
made. To recover the sources X by projecting out

x̂ = [W ∗ Y]maxC (8)

where x̂ is the ICA estimate of x and [...]maxC denotes the (normalised) vector that maximally correlates with
the normalised columns of x. Note that due to the scaling and inversion indeterminacy problem, the actual
output is divided by largest element of x and then selected as the column of x̂ or −x̂ that has the highest
correlation with the original (noise-free) signal.
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4.1. Results

In order to determine the optimal delay τs and embedding dimension m a measure of how well the signal has
been cleaned is required. An intuitive choice is Schreiber and Kaplan’s27 noise reduction factor,

χ =

√
〈yi − xi〉2
〈zi − xi〉2 (9)

where zi is the cleaned signal (and equal to x̂ in equation (8)). χ is therefore a measure of the factor by which
the RMS error is reduced. Unlike the investigation of Schreiber and Kaplan,27 the ECG model may be used to
obtain a truly noise-free time series xi so that the value of χ may be viewed as the actual noise reduction factor
and not merely a lower bound. The higher the value of χ, the better the noise reduction procedure, whereas
χ = 1 indicates no improvement since similar accuracy could have been achieved by using the raw signal, yi,
instead of zi.

Figure 6 shows the variation in χ for sample delays from 1 to 10 and embedding dimensions from 2 to 30.
The darkest region, where χ = 1.19 corresponds to the optimal values of τs = 1 sample and m = 19. Figure 7
illustrates the noisy signal y(t), the original underlying signal x(t), the ICA cleaned signal z(t), the error between
the cleaned signal and the underlying signal z(t)−x(t), for these values of τs and m. Note that although almost
all the Gaussian noise is removed, serious distortion of the ECG actually results with reduced relative R-wave
height. This distortion reduces the signal to noise ratio for a QRS detector and will hamper performance, despite
the removal of the underlying noise. Note also that the cleaned ECG is delayed with respect to the source and
noisy signal due to the embedding process. This offset has been allowed for in calculating χ As expected for
Gaussian noise, SVD gave a similar performance to ICA, with a maximal NRF value of χ = 1.18 and Correlation
coefficient (between z and x) of C = 0.996 for m = 19 and τs = 1 using the first five principal components of
Y (p = 5). Interestingly, better Gaussian noise reduction was observed in the output signal (z) by using p = 4,
with C = 0.994 and χ = 0.89). However, small distortions in the waveform may lead to small but significant
changes in R-peak location, ST-level and QT-interval. Values of p < 4 removed all the visible Gaussian noise,
but lead to large morphology distortions.

The same experiment was repeated for the artificial BP signal, a 256Hz, 10 second segment (x(t) in Figure
8). In order to simulate real artifact that might appear on a photoplethismogram, a 4Hz sinusoid, was generated
with one tenth the amplitude of the BP signal and a hamming window applied to its length (e(t) in Figure
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8). This is intended to simulate a transient repetitive finger motion, tapping on the sensor. The sum of these
two signals (y(t) = x(t) + e(t) in Figure 8) is then evaluated as above. Figure 9a shows the variation in χ for
sample delays from 1 to 10 and embedding dimensions from 2 to 70 for this noisy signal. Note that a maximal
performance of χ = 2.2 is achieved for τs = 1 and m = 28. z1(t) in Figure 8 is an example of ICA cleaning using
these parameters. It can readily be seen that the actual performance for removing the noise from the signal is
not as impressive as the χ statistic implies, with an attenuation of only 0.8dB at the frequency of the artifact
(4Hz). A better metric for judging noise removal in this case turns out to be a simple correlation C between the
original signal and the cleaned signal, with a 2.5dB attenuation at 4Hz. Figure 9b is a greyscale plot of C for
the same values of m and τs with a maximal value of C = 0.97 for m = 64 and τs = 1.

Note that the correlation between the noisy and original (zero-noise) signal, x, is C = 0.95, the same as
that between z1 and x. Note also that the parameters required for largest value of C lead to some distortion
of the BP waveform, with a diminished DRW and a broadening of the pulsatile waveform. This would lead to
problems with algorithms that relied on detecting the DRW and an over-estimation of the LVET respectively.
The parameters required to give the largest value of χ result in little waveform distortion, but no significant
noise removal.

Experiments using SVD revealed that this technique is inappropriate for non-Gaussian noise, with maximal
values of χ = 1.03 and C = 0.97 using p = 2. Visual inspection reveals that although p = 1 results in a significant
reduction in the noise component, the salient features of the signal are heavily distorted.

5. CONCLUSIONS

Extensions to a new dynamical model which is capable of replicating many of the important features present in
human ECG, BP and respiratory signals have been introduced. Moreover, many of the morphological changes
observed in the human ECG and pulsatile BP waveform manifest as a consequence of the geometrical structure
of the model. Model parameters may be chosen to generate varying morphologies for the PQRST waveform.
The power spectrum of the RR-intervals can be selected a priori and used to generate the respiratory signal
and drive the ECG and BP signal generator. This allows the operator to prescribe specific characteristics of the
heart rate dynamics such as the mean and standard deviation of the heart rate and spectral properties such as
the LF/HF ratio. Key physiological features have been incorporated using motion of a trajectory throughout a
three-dimensional state space. The quasi-periodicity of the cardiac cycle is represented by attraction towards a



τ
s

2 4 6 8 10

10

20

30

40

50

60

70

τ
s

2 4 6 8 10

10

20

30

40

50

60

70

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

χ C

mm

a b

Figure 9. (a) Left: noise reduction factor χ, over embedding dimensions m and sample delays τs for embedding-ICA on
noisy artificial BP. (b) Right: Correlation of C cleaned signal z, with original signal x, over embedding dimensions m and
sample delays τs for embedding-ICA on noisy artificial BP.

limit cycle. The model can produce realistic ECGs (with QT-intervals and R-peak height variation (RSA) which
vary linearly with the RR-intervals as has been found in real ECGs28, 29), blood pressure signals (with correlated
LVET and PTT) and respiratory signals (which are couple to both the ECG and BP variations) . Through the
application of a modern signal processing technique, ICA,

As an application example, the model is used to assess the noise reduction performance of ICA, which
requires perfect knowledge of the underlying signal sources to evaluate the performance correctly. In particular,
it is shown that although ICA is an excellent noise removal technique for ECG and BP signals, even with only a
single channel, the resultant phase distortion on the ECG and BP signals may introduce significant errors into
width or peak location sensitive metrics such as PSD based measures of HRV, ECG-derived respiration, PTT or
LVET estimates.
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