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Abstract 
In this article we present a simple technique that 

utilizes the cross correlations between ECG signals and 
haemodynamic signals for  the purpose of assessing signal 
quality and detecting artifacts in the arterial blood 
pressure (ABP) signal. The technique was tested using 
cases from a physician-annotated patient monitoring 
signal database from Beth IsraeUHarvard-MIT University 
data bank. The results were encouraging: 90% of the 
manually annotated artifacts were correctly classified as 
artifacts and 99% of the manually annotated true events 
were correctly classified (out of a tQtd Of 683 manualiy 
annotated alarms). 

1. Introduction 
Alarms due to artifacts in monitoring signals reduce the 
efficacy of healthcare provision, especially in intensive 
and critical care units (ICU/CCU). Thus, it is important 
to develop a method for identifying these false alarms 
(based on artifacts) versus actual alarms (due to real 
changes in a patient's underlying physiologic state). 

Numerous systems have been developed for 
automaticaIly analyzing patient monitoring signals. These 
systems have employed various methods ranging from 
traditional signal processing techniques such as frequency 
analysis, time-frequency analysis, and wavelet analysis 
[5][3][7] to techniques developed by Artificial 
Intelligence researchers [4][1]. Most of these systems use 
a single-signal model, or when multiple channels are 
analyzed, they are of the same type of signal - such as 
ECG signals from multiple leads. However, there are a 
several important exceptions Error! Reference source 
not found.[8][9]. Tsien looked at a number of patient 
monitoring . signals, inchding blood pressure, carbon 
dioxide, oxygen and heart rate, exploring a number o f  
machine learning techniques for identifying artifacts and 
comparing single channef and multi-channel approaches. 
Zong, et at. developed a system for detecting artifacts in 
arterial brood pressure (ABP) signals by analyzing the 
relationship between the ABP signal and the ECG signaIs 
using a fuzzy logic approach to evaluate signal quality of 
the ABP waveform 191. Both of these studies found that 

the multi-signal approach was more effective than simply 
analyzing the targeted signal. Although much could be 
said about the strengths and weaknesses of these various 
methods, the algorithm complexity was quite significant. 

In the next section we shall describe a simple method 
that requires minimal computational power for exploiting 
the relationships among signals used in patient 
monitoring. In the third section we shall present 
experimental results that demonstrate the effectiveness of 
this method for detecting artifacts in ABP signals, and 
thereby reduce false blood pressure alarms. 

2. Methods 
The fundamental premise of this study is that 

relationships among certain patient monitoring signals 
can be used to assess a particular signal (e.g., whether it i s  
an artifact) in light of the behavior of other signals. Here 
we will be relying on the correlation between ECG and 
ABP signals, using the ECG for examining the ABP's 
fidelity. The proposed method represents the interaction 
of the monitored signals as morphograms and specifies 
rules for interpreting changes to these morpograms. We 
use the term "morphogram" to describe the plotting of, 
one signal versus another for a given period of time -- 
e.g., an ECG signal on the x-axis and the ABP on the y- 
axis, 

We investigated if the ABP and the various ECG 
signals are highly corretated by determining if a 
characteristic morphology or signature is present. The 
signature represents the correlated signals for a single 
heart beat. Since the time period used is greater than one 
heart beat, significant departures from this signature can 
be seen on the morphogram plots. These departures 
indicate either a physiologically caused event or an 
artifact. The underlying heuristic of the morphogram 
algorithm is that physiologically caused events are more 
likely to affect all signals, and thus there will be 
perturbations in all morphograms, whereas artifacts are 
more likely to affect only a single signal, and thus there 
will be perturbations only in the morphograms involving 
that signal. Figure I shows a 12 second plot of a typical 
set of signals being monitored for a patient with 
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respiratory failure 161. Figure 3 shows the three 
morphograms created using two of the ECG signals (11 
and V) and the ABP signal. Each morphogram subplot 
has a well-defined shape that repeats itself with time as 
long as there are no artifacts and the patient is not 
undergoing any physiological changes. Not only do the 
morphograms for each patient have a well-defined shape, 
but often the signatures of the two ABP-ECG 
morphograms and the ECG-ECG morphogram have 
characteristic shapes that can be generalized across 
patients. 

I _ _ . ~ _ _  ................................ 
"a., : I :  

"I?' 

. I  . . . . . . . . . . . . .  . .  -. 
@ V I  .I 8.1 r . 1 . . r _ i r - I  -1 I , . . U  1 "  Wf-rT-rT  'r 

. I  

1 .  

. . . . . . . . . . . .  . . . . . . . . . . . . .  , .  - ".".l... . i, .~..~.I 

. . . . . . . . . . .  -;?P . .  I . . . . .  f .. . I  . . . .  , J.r- -:.- ' i ~ 

Figure 1 MCLl, 11, and V ECG leads, ABP, PAP, 
PLETH, and RESP monitoring signats 

Figure 2 Morphograms of 11, V, and ABP signals 

Since the ABP wave lags behind the QRS complex, 
the ABP-ECG morphograms will typically have the 
characteristic "L" shape (or backwards "L" shape). 
Assuming that the ABP value is mapped onto the Y-axis 
and the ECG value is mapped onto the X-axis, then when 
the ABP is at a low Y value, the ECG is approaching its 
maximum (or minimum), and similarly when the ECG is 
approaching its neutral value, the ABP is approaching its 
maximum. This is what accounts for the characteristic 
"L" shape of the ABP-ECG morphograms. On the other 
hand, the ECG-ECG morphograms trace out a pattern that 
lies along the diagonal, either at 45 degrees or 135 
degrees (usually as a bar or an oval). This is because both 

signals reach their extremes (some point in the QRS 
complex) in unison. 

Any change in the pattern of a signal will be quite 
obvious in the morphograms using that signal, i.e., there 
will be a perturbation of each morphogram's signature 
morphology. Given that the signals are highly 
correlated, a change in all the morphograms probably 
indicates a physiologically caused event, whereas a 
change in the subset of the morphograms that have a 
single signal in common probably indicates an artifact 
(e.g., a mechanical problem for that signal). Figure 3 
shows an example where all the morphograms (for the 
same patient) are perturbed because of physiological 
changes in the patient's condition. 

Figure 3 Perturbations in all the morphograms 

Figure 4, on the other hand, shows the morphograms 
for a patient with pulmonary edema during a time period 
in which an artifact occurs in the ABP signal. Note that 
only the morphograms that include the ABP signal are 
perturbed. The morphogram for the two ECG signals 
retains its characteristic diagonal-oval shape, whereas the 
two morphograms in which the ABP signal is plotted 
against either of the two .ECG signals are highly distorted. 

Figure 4 Non-consistent perturbations in the different 
morphograms indicating an artifact 

This is a clear indication of an artifact presence in the 
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signal that is common to the second and third 
morphogram subplots, namely, the ABP signal. In order 
to exploit morphograms we need to describe how 
perturbations are determined. Ideally one could determine 
the "normal" morphogram signature, with limits, for a 
particular patient, and then detect when the pair of signals 
being traced significantly exceeds these limits. For 
example, the algorithm could determine the convex hull 
for the morphogram. However, this is computationally 
expensive, and one of our goals has been to try to keep 
the algorithm as simple as possible. Our method is to 
enclose the morphogram in a rectangle whose sides are 
parallel to the x and y axes, and then calculate the area of 
this rectangle. The algorithm divides the 15-second 
period preceding the alarm into equal one-second, non- 
overlapping segments and creates a morphogram for each 
segment. Rectangular areas are computed for each 
segment. The minimum and maximum rectangular areas 
for these segments are identified. Finally, the ratio of the 
difference between the maximum and minimum areas to 
the minimum area is computed and compared to a 
threshold. We interpret the alarm as an artifact if the ratio 
for the ECG pair of signals is below the first threshold 
and both ABP ratios (one for each ECG lead) are above a 
second threshold: 

(rPtio_of_rect_areas(ecgl,ecg2)< threshold-ecg) & 

(ratio_of-rectr-ureas(abp,ecgl) > threshold-abp) & 

(ratio_of_rect_areas(abp,ecg2) > threshold-abp) 

where rutio-of_rect_areas(sl, s2) is: 

(ma-recr-urea - min-rect-area) / min-rect-area 

The following examples (for a patient with respiratory 
failure) illustrate how the algorithm works, using the two 
ECG leads (I1 and V) and the ABP signal. Figure 5 shows 
the signals being monitored during the period of an alarm 
that has a physiological cause. Figure 6 shows the three 
morphogram subplots. Each subplot includes the 15- 
second morphogram (in blue) and the fifteen 
encapsulating rectangles (in red). (For purposes of easy 
visualization, the rectangles have been shifted SO that 
their lower left hand corners lie at the same point.) In a 
case where at least one signal is unstable there will be a 
lot of variability in the areas of the rectangles. There are 
significant changes in all the morphograms, indicating the 
presence of changes not only in the ABP signal, but also 
in the ECG signals over the period of study. In the second 
example the alarm is caused by an artifact (Figures 7 and 
8). In the morphograms there are significant changes in 
only two of the morphogram subplots - the 2"d and 3', 
which are the ones involving the ABP. It should be noted 
that the morphogram heuristic has an inherent 
weaknesses---if there is an ABP artifact at the same time 

that there is significant noise in the ECG signal, then the 
algorithm will interpret the alarm as having a 
physiological cause. In order to deal with this problem, 
two additional rules were added to the morphogram to 
identify fairly obvious cases of ABP artifacts. This leaves 
the more subtle cases to the morphogram rule. The first 
mle classifies the ABP signal as an artifact whenever 
there is a stretch of more than L consecutive sample 
values that are equal due to saturation. The second rule 
classifies the ABP signal as an artifact whenever the ABP 
signal range has narrowed for a sustained period of time 
due to overdamping. 

.. ."__..^...,.-_..__I 

Figure 5 Monitored signals for the period starting 20 
seconds before and ending 4 seconds after the alarm 

14, . 

Figure 6 Morphograms for a physiologically caused 
ABP-based alarm 

3, Results 
We tested the morphogram algorithm on the publicly 

available MIMIC-I (Beth-Israel Hospital) data base [6]  
using the artifact annotations provided by Zong [9]. We 
used the following parameter settings for the three rules: 
the morphogram rule with ECG and ABP threshold 
settings of 0.8 and 1.7, respectively, the rule for detecting 
saturation with a threshold of 15, and the rule for 
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detecting overdamping with thresholds of 8 mmHg and 
250 samples. (The results were similar for a wide range of 
parameters we tested, indicating that the algorithm is 
quite robust.). Out of 160 manually annotated artifacts, 
the morphogram algorithm detected 144 (as artifacts) and 
missed 16 (i.e., classified them as true alarms whereas 
they had been manually annotated as artifacts). Out of 
523 manually annotated true alarms, the aigorithm 
classified 518 as true alarms and 5 mistakenly as artifacts. 
Thus, for this experiment the sensitivity was 90% and the 
specificity was 99%. 

Figure 7 Monitored signals for the period starting 20 
seconds before and ending 4 seconds after the alarm 

P $00 
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Figure 8 Morphograms for an ABP-based alarm 
caused by an artifact 

4. Discussion and conclusions I 

In this paper we have presented an algorithm that 
detects artifacts in ABP signals via morphograms, where 
abnormalities in the signals show up as perturbations in 
morphogram shapes. A simple method was developed for 
classifying these perturbations as either caused by clinical 

conditions or by artifacts and was tested for detecting 
ABP artifacts using a physician-annotated database with 
encouraging results. Finally, it should be stressed that the 
morphogram algorithm is not limited to detecting artifacts 
in ABP signals, but can easily be applied to other signals. 
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